
Accelerating Software Memory Compression on the Cell/B.E.

Vicenç Beltran
Barcelona Supercomputing Center

vbeltran@bsc.es

Xavier Martorell Jordi Torres Eduard
Ayguadé

Barcelona Supercomputing Center
Technical University of Catalonia

{xavim, torres, eduard}@ac.upc.edu

Abstract
The idea of transparently compressing and decompressing the con-
tent of main memory to virtually enlarge their capacity has been
previously proposed and studied in the literature. The rationale be-
hind this idea lies in the nature of some applications whos perfor-
mance are memory or disk–bounded. For this kind of application it
is acceptable to use CPU cycles to compress and decompress data
on the fly, thus increasing the available memory. This additional
memory capacity can allow the execution of larger applications
without swapping, or can significantly reduce the number of disk
access for applications with a working set that largely exceeds the
main memory.

Previous studies that have worked on this idea can be classified
as either software or hardware based. The software approach is
usually implemented at the operating system level and works on
top of commodity hardware. The hardware approach is based on
modified or specialized hardware not present in current systems.
The main advantage of the software approach is that it can run
on unmodified commodity systems, while the hardware approach
need ad–hoc hardware but it usually provides better performance
for a larger set of applications. Although both approaches have
been proved effective for some workloads neither of them has been
widely used in production systems.

In the current scenario of many–core systems and heteroge-
neous processors, the flexibility of a software approach and the
performance of a hardware approach can be combined to boost the
real applicability of main memory compression. In this paper we
propose and implement a software memory compression system
for the Linux kernel, that offload the CPU–intensive compression
task to the specialized processor units present in the Cell/B.E. We
have evaluated our hybrid proposal with the IOzone benchmark,
obtaining a 5x speedup with 80% of the system memory used as a
compressed cache.

Keywords Memory Compression, Linux kernel, Cell/B.E.

1. Introduction
Main memory compressed systems are usually based on the reser-
vation of some physical memory to store compressed data, virtu-
ally increasing the amount of memory available to the system. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

extra memory reduces the number of accesses to the disk and al-
lows the execution of applications with larger working sets with-
out trashing. However, the benefits of the compressed memory sys-
tems greatly depends on a number of factors such as the application
workload compression factor, the application access pattern (multi–
threaded vs single–threaded, sequential access vs random access),
the computational cost of the compression algorithm and finally the
ratio of compressed/uncompressed memory configured in the sys-
tem.

Previous works has mainly focused on memory compression
systems to accelerate the execution of single threaded applica-
tions with a large working set, exchanging high latency disk ac-
cess for faster compressed memory access. This approach uses the
idle times that this type of application usually spends accessing the
disk to perform the decompression of the data requested. In this
approach the time that the application will be waiting for disk I/O
is used to perform the compression and decompression of the data,
thus making the most of underutilized cycles to accelerate memory
access. All the afore–mentioned works have been evaluated on sin-
gle processor systems so its conclusions are only relevant to single
processor systems. Recently, new studies have investigated the ben-
efits that compressed memory systems can contribute to disk I/O
bandwidth bound applications like a multi–threaded web server. In
this case, the problem is that the web application is bounded by the
available I/O bandwidth of the disk. A compressed memory system
can mitigate this problem by providing more memory available de-
voted to buffer cache in the system, thus reducing the number of
accesses to the disk and the effective disk I/O bandwidth needed.
A major challenge with this approach is the large amount of CPU
power needed to provide the adequate bandwidth between the non
compressed memory and the compressed one and vice–versa. How-
ever, this CPU power is now more easily available with the prolif-
eration of multi–core and multi–processor systems which can be
utilized for this purpose (5). Although this approach expands the
range of applications that can benefit from memory compression,
its computational cost is yet too high to be widely used.

The main contribution of the paper is to prove the feasibility
and suitability of heterogeneous processors such as the Cell/B.E. to
accelerate the computationally expensive compression and decom-
pression tasks. To this end, we have extended our multiprocessor
aware memory compression system (5) to run on a heterogeneous
processor and offload the compression and decompression tasks to
the specialized coprocessor units present in the Cell/B.E. To ac-
complish our objective we have solved three challenging issues.
First, we have re–implemented the LZO algorithm to take advan-
tage of the vectorial nature of the SPUs present on the Cell/B.E.
Second, we have extended the Linux Crypto API and the Kspu
framework (17) to be able to use the coprocessors present in the
Cell/B.E. from inside the Linux kernel. Finally, we have evaluated
the performaze of our prototype with the IOzone (20) benchmark

using the majority of the physical memory to store compressed
data. As we will show, our proposal is able to work with optimal
performance when up to 80% of the memory is dedicated to store
compressed data.

The rest of the paper is organized as follows: Section 2 presents
the related work on memory compression and section 3 introduces
the Cell/B.E. Section 4 presents our augmented compressed page
cache design for the Cell/B.E. In section 5 we discuss the results
obtained with the IOzone benchmark. Finally, section 6 draws the
conclusions of the paper.

2. Related Work
Memory Compression implementations can be classified as either
hardware or software approaches, each with their own advantages
and drawbacks. From the point of view of performance, the hard-
ware approach is the best, mainly because of the utilization of cus-
tom hardware specially designed for this purpose. In contrast soft-
ware approaches make the most of underutilized CPU resources
present in current systems to provide a more modest performance
improvement. In this paper we are focused on a software approach
that uses hardware accelerators to improve the overall system per-
formance. In the next paragraph we perform a brief review of the
most relevant studies of both software and hardware memory com-
pression techniques.

From the hardware based studies we can cite (23), (4), (9) which
are all based on simulation techniques. The results of these works
shows noticeable improvements in the amount of available main
memory and system performance but they all need specialized
hardware not available in current systems. To the best of our knowl-
edge, the only main memory compression hardware approach im-
plemented is the IBM MTX technology (2). In (18) the MTX tech-
nology and the operating system modifications needed to run on
top of the compression hardware are described. In (3) a perfor-
mance evaluation with promising results over different workloads
is presented. Ultimately this project has not been a success, proba-
bly because of the cost of the specialized hardware versus the cost
of memory chips.

The most relevant studies based on software techniques are now
described. The first memory compression proposal, due to Wilson
(21), intends to improve system performance reducing the latency
associated with disk accesses. In (8) Douglis implements the first
adaptive memory compression scheme in Spirit OS, based on a
global LRU that can improve or decrease the performance of the
system depending on the workload characteristics. Kaplan et al.
(12) studied the adaptive memory compression scheme proposed
by Douglis through simulation and found that the proposed scheme
has been partly at fault for some workloads. Kaplan also contributes
the WK family of compression algorithms designed for in memory
data representations rather than file data. Finally he proposes a
method to determine how much memory should be compressed
during a phase of program execution by performing an online
cost/benefit analysis, based on recent program behavior statistics.

In (6) Cervera et al. implemented a compressed swapping mech-
anism to reduce the number of times the Linux OS has to access
the swap device. Although the amount of compressed swap mem-
ory used was rather small, they observed a noticeable improve-
ment of system performance. This is the first work that swaps out
pages to the swap device in a compressed form, virtually increas-
ing its capacity. Freedman et al. (10) apply memory compression
techniques to reduce the power consumption and to improve the
speed of embedded systems. Their compressed cache implemen-
tation is based on a log–structured circular buffer that allows the
compressed cache area to be dynamically resized. They estimate
that compressed memory improves the disk access in both power
efficiency and speed by 1–2 orders of magnitude. In (15) Roy et al.

also proposes using compressed memory in order to hide the large
latencies associated with disk access. They claim that the optimal
fraction of memory that should be reserved for compression lies
at around 25% across a wide range of application types but they
fail to provide a more general approach to set the memory com-
pression size. In (7) De Castro et al. reevaluates the use of adap-
tive compressed caching to improve the system performance. The
main idea behind their proposal is to reduce the amount of disk ac-
cesses to improve the data access latency. Their contribution is a
new adaptability policy that adjusts the compressed cache size on–
the–fly based on the recent program behavior. They implement the
compressed cache in the Linux kernel and they are the first to pro-
vide file backed memory compression as well as swap based mem-
ory compression. They use the WKdm specialized compression al-
gorithm to compress swap based pages and the LZO generic algo-
rithm to compress file based memory pages. Their implementation
provides noticeable improvements for a wide range of workloads
and minimum overhead for the rest. Tuduce et al. (19) proposes a
new heuristic to dynamically determine the compressed cache size
with the objective of keeping all the application’s working set in
memory. Their results show increases in performance by a factor
of 1.3 to 55 times in three single threaded applications. Finally,
in (14) Nitin Gupta has ported De Castro’s implementation of the
compressed cache from kernel 2.4 to kernel 2.6 under the Google
Summer of Code program for the OLPC project (13). The work
is based on ideas from Kaplan, De Castro and Irina. Their main
objective is to increase the tiny memory available on the OLPC
laptops. None of the cited works has studied memory compression
from the point of view of disk I/O bandwidth. We focus our dis-
cussion around the multi–core and heterogeneous systems as they
are standard commodity hardware. To the best of our knowledge,
our implementation is the first to fully take advantage of a hetero-
geneous multi–core processor to offload the compression and de-
compression tasks. Another remarkable characteristic is that it is
highly scalable in the amount of RAM that can be used to store
compressed data (up to 80% of the physical RAM).

3. Cell/B.E.
The Cell Broadband Engine Architecture (CBEA) (11) is a single
chip heterogeneous multiprocessor. The design goals of the Cell
processor were to address the fundamental challenges facing mod-
ern microprocessor development: high memory latencies and on–
core power dissipation. Until now, microprocessors have achieved
performance improvements through higher clock frequencies and
deeper pipelines, but the fundamental problem that current proces-
sors face is the memory wall (22). On modern processors signif-
icant amounts of time are spent waiting in memory stall, due to
the large difference between the processor and the memory speed.
Large memory latencies make it difficult to obtain further perfor-
mance gains with traditional processor designs based on hardware
caches. The Cell processor approaches this problem in a different
way, providing a heterogeneous processor with explicit memory
management. This approach potentially improves the throughput of
the processor, but it also increase the effort to efficiently implement
a program.

Figure 1 shows the three basic components of the Cell proces-
sor. First, the PowerPC Processor Element (PPE), which is primar-
ily intended to manage global resources. Second, the Synergistic
Processing Elements (SPEs) that are specialized vectorial proces-
sors. Finally, the communication between the PPE, the SPEs, main
memory, and external devices is realized through the Element In-
terconnect Bus (EIB).

EIB (up to 96 Bytes/cycle)

L2 L1 PXU

MIC BIC

16 B/cycle 16 B/cycle 16 B/cycle(2x)

32 B/cycle

16 B/cycle

Dual XDR FlexIO

Synergistic Processor Elements

Power Processor Element

...

PPU

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

EIB (up to 96 Bytes/cycle)

L2 L1 PXU

MIC BIC

16 B/cycle 16 B/cycle 16 B/cycle(2x)

32 B/cycle

16 B/cycle

Dual XDR FlexIO

Synergistic Processor Elements

Power Processor Element

...

PPU

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

LS

SXU

MFC

SPU

16 B/cycle

(each)

16 B/cycle
(each)

256KB

Figure 1: The Cell Broadband Engine Architecture

The Power Processor Element
The PPE is the main Cell processor designed to be power efficient
and manage all other system peripherals and processor cores. It has
a dual–issue in–order execution design. It provides two hardware
threads that execute simultaneously. The PPE is a 64 bits processor
with a vector unit (VMX) that has the usual cache hierarchy with
a 32KB first–level (L1) instruction and data cache and a 512KB
second level (L2) cache used to hide memory latencies. The PPE is
in charge of executing the Operating System, as well as distributing
the load between all the SPE units. The communication between
the PPE and the SPEs is done through shared memory regions or
through direct mail boxes provided by the SPE units.

The Synergistic Processing Element
SPEs are specialized vector units with an instruction set similar (but
not compatible) to the PPE VMX. The main difference is found
in the memory hierarchy, which is divided into three levels: the
main memory, the local stores and a large unified register files. The
large unified register file makes it possible to hold the majority
of operands directly inside the CPU core without having to spill
values onto the stack. A 256Kb local store is used to store the SPE
code and temporary data. SPEs can perform asynchronous DMA
transfers between their local stores and main memory

SPEs are designed to execute regular computationally intensive
programs rather than general purpose software. This allows the sys-
tem to hide memory latencies without having to employ complex
hardware mechanisms such as branch–prediction, out–of–order ex-
ecution, and deep pipelining, often used in superscalar processor
cores. This permits the reduction of the hardware required to obtain
a high throughput and hardware utilization on regular programs,
but at the cost of requiring a considerable effort in order to opti-
mize non–regular programs in such a way that an acceptable per-
formance is obtained. The simple design of the SPE cores makes it
possible to pack together up to eight SPU in a single multi–core–
die.

The Element Interconnect Bus
Communication between SPEs and the Element Interconnect Bus
(EIB) is realized through the SPEs Memory Flow Controller
(MFC). The MFC of each SPE can enqueue up to 16 DMA com-
mands, which implies that the whole system can process more than
100 DMAs simultaneously. It also provides memory mapped I/O
registers (MMIO) and channels to monitor DMA commands, SPU
events and facilitate interprocess communication via mailboxes and
signaln-notification. Mailboxes are a set of queues that support ex-
changes of 32 bit messages between an SPE and other devices. Two
one–entry mailbox queues are provided for sending messages from
the SPE. The EIB is a 4–ring structure (2 clockwise, 2 counterwise)
for data, and a tree structure for commands with an internal band-
width of 96 Bytes per cycle. The EIB has two external interfaces,
the MIC, which is the interface between main memory and EIB and
the BEI, which allows data transfer between EIB and I/O devices.

4. A Compressed Page Cache for the Cell/B.E.
Our original Compressed Page Cache (5) (CPC from now on) im-
plemented in the Linux OS, was the first software memory com-
pression implementation to fully exploits shared memory multi–
processors and multi–core systems. The objective of our design
was to extend the unified page cache of Linux with a high perfor-
mance CPC that fully exploits the power of current multiprocessor
systems. Another design objective was to minimize the number of
changes made to the Linux kernel, avoiding the addition of com-
plex algorithms or data structures. Figure 2 shows the Linux unified
page cache extended with our compressed page cache. In the next
sections, we describe the original implementation and the issues
that have been overcome to port our shared memory multiproces-
sor implementation to the Cell/B.E. processor.

4.1 Compressed Page Cache Design
Linux memory management is developed around its core concept:
the page frame. All the memory available on the system is divided
into page frames of the same size (usually 4Kb). The page frame is
the smallest unit of work to manage the system memory. The con-

tent of a page frame changes dynamically depending on the needs
of the system. Generally speaking, one page frame may contain
three types of data: anonymous pages, file backed pages and pri-
vate kernel pages. The anonymous pages contain data dynamically
allocated from user space programs and can be swapped out under
memory pressure if a swap device exists. File backed pages con-
tain data that comes from filesystem I/O operations. Finally, private
kernel pages are used and managed by the kernel and device driver
code for private purposes and can not be swapped out. An exam-
ple of this type of memory is the SLAB allocator, which provides
memory for in–kernel use.

The main data structure behind the unified page cache is a
radix–tree that works as an efficient dictionary, mapping keys with
page frames. All the I/O operations take place through this uni-
fied cache. When a page fault occurs or an I/O operation is re-
quired, the kernel always checks the unified page cache (with a
call to find get page()) to find the requested data. If the data is not
in the page cache the kernel adds a new page frame to the page
cache (with a call to add to page cache()) and performs the re-
quired I/O operation so that the page cache is always up to date.
All the pages of the unified page cache are linked together with
a linked list to track their activity with a LRU like algorithm.
When the system is under memory pressure, the kernel tries to free
batches of pages from the tail of the LRU list (with a call to re-
move from pagecache()) until enough memory is available.

The main idea behind the CPC is to modify the current unified
page cache to also contain compressed page frames. Each com-
pressed page frame has an augmented struct page called struct
cpage, which is dynamically created to manage the content of the
page. This struct cpage is an extension of the standard struct page
but contains additional information about the location and size of
the compressed page frame. We mark one unused bit of the flags
field in order to identify the pages that are currently compressed.

Figure 2 shows the CPC diagram. In this scenario, we capture a
page that is close to being discarded from the page cache, compress
it, split its content on top of the SLAB allocated buffers, and update
its reference in the radix–tree to point to the new compressed page.
The original page frame is discarded and the new page is inserted
at the head of the LRU list. If it is not referenced in a period of
time, then it is discarded by the kernel reclamation code. When a
lookup on the page cache returns a compressed page, we allocate
a new page frame and fill it up with the decompressed data. SLAB
buffers that contain the compressed data are returned to the SLAB
allocator. If the allocation of the new frame fails, the compressed
page frame is discarded and a null value is returned, so the kernel
takes the right actions to read the required data from the filesystem
or swap device.

To extend our CPC design to support an heterogeneous archi-
tecture such as the provided by the Cell processor, we have to over-
come a number of issues. First, the original design used the syn-
chronous Linux Crypto API to perform the memory compression
and decompression. We need to change to an asynchronous mode
of operation, because in the Cell the compression and decompres-
sion operations are not performed on the same processor that run
the Linux kernel. Second, we have re–implemented the LZO com-
pression algorithm to make the most of the vector nature of the
SPU processors. Finally, we need to extend the Kspu framework
(17), which allows the execution of code on the SPUs from the ker-
nel side, to overcome the limitation of only be able to use one SPU.
In the following sections we explain in greater detail the mentioned
issues.

4.2 Linux Crypto API
The Linux crypto API is used to publish cryptographic, compres-
sion and digest algorithms in a unified way to in–kernel users such

Figure 2: Compressed Page Cache Diagram

Figure 3: Linux Crypto API extended with asynchronous compres-
sion

as IPsec, some wireless drivers and file systems drivers. As we can
see in Figure 3, all the encryption, compression and hashing algo-
rithms implement the synchronous API. This API is the most fre-
quently used inside the kernel, as its use is easy and natural. In con-
trast, the asynchronous API, built on top of the synchronous one,
provides more advanced functionalities and was specifically de-
signed to take advantage of specialized encryption hardware. This
API provides a way to asynchronously send a batch of requests,
thus improving the performance and use of specialized hardware
such as cryptographic processors. The original Linux asynchronous
crypto API does not support neither compression nor hashing algo-
rithms, so our first step was to extend this asynchronous API in
order to be able to use our offloaded compression algorithm on the
SPUs. Then, we integrated the asynchronous compression crypto
API with the Kspu framework to execute the compression and de-
compression on the SPU processors. This integration allows the
transparent acceleration of the compression tasks to all kernel users
including, but not limited to, our CPC.

4.3 Kspu Framework
The Kspu framework is an experimental module designed by Se-
bastian Siewior (17) which allows the execution of kernel code
on one SPU from inside the kernel space. The primary objective
is to be able to offload cryptographic algorithms from the Crypto
API, but the framework can also be used to execute arbitrary code.
The integration of the asynchronous compression API and the Kspu
framework did not produce any major problems, as the steps needed
to encrypt or compress a block of data are similar.

As an example of the Kspu framework usage, an in–kernel
user enqueues a request using the asynchronous compression API.
This API enqueues the request in a dedicated queue of the Kspu
framework. When the SPU is ready, the request is notified to the
SPU. Then the data is fetched from the SPU. When all the data
required is in the SPU the compression algorithm is executed and
the resulting data copied back to main memory. Finally, the Kspu
framework calls a method handler of the crypto API that notifies to
the client the finalization of the process.

The Kspu framework has two major limitations: the impossibil-
ity of running kernel code on more than one SPU, and the lack of
request priorities, so we cannot give a higher priority to decompres-
sion requests, which are always in the kernels’s execution critical–
path. Both limitations have been addressed in our implementation
to improve the overall system throughput and reduce the latency
of decompression tasks. We link together each of the four logical
PPE processors present on the QS20 (two physical hyper–threaded
processors) with two different SPUs. One SPE executes the com-
pression tasks and another SPE executes the decompression tasks
triggered from their associated PPU. With this configuration the
wait time of individual decompression requests is minimized, while
the throughput of batch compressions requests is maximized.

4.4 LZO vectorization
The performance of the original LZO implementation on one SPU
was three times slower than a Pentium 4 processor at the same
frequency. The poor performance of the original LZO code can be
explained by the specialized characteristics of the SPU cores. These
cores do not have branch prediction hardware and miss–predicted
branches incur high penalties. Moreover, most branches of the
initial LZO code cannot be accurately predicted at compilation
time. Finally, the original code was completely scalar and full of
unaligned memory accesses, so it cannot capitalize on the vector
nature of the SPU cores.

To improve the performance of the code we had to completely
rewrite the compression algorithm to avoid, as far as possible, the
most frequent branch instructions and the unaligned memory ac-
cesses, as well as, to vectorize the most time consuming functions
of the compression algorithm. Some control dependencies were
changed to data dependencies. In addition, the most time consum-
ing functions, the string hash calculation and the string comparison,
were vectorized to speed up the algorithm. With this optimizations
we greatly improved the performance of the original LZO code as
we can see in Figure 4, but we needed to completely rewrite the
original code from scratch. This figure shows the performance of
the LZO code with a widely used working set used to evaluate the
performance of compression algorithms, which is composed of the
first 100MB of the Wikipedia. Figure 4 shows the performance of
the original LZO code on three different CPUs at the same clock
frequency (3200 MHz): a Pentium 4, the PPU core of the Cell pro-
cessor and the SPU core of the Cell processor. Finally, the figure
also shows the performance of the vectorized LZO code on the
SPU of the Cell processor. As we can see the vectorized code is
three times faster than the original LZO code on the SPU processor
and 20% faster than the original code on a Pentium 4 processor. It
is worth noting that the power consumed by one SPU is a fraction

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P4 PPU SPU SPU-vec

(M
b

/s
)

Compresion performance

Figure 4: LZO performance on several processors

of the power consumed by an out–of–order superscalar processor
such as the Pentium 4. Thus, if we take into account that the Cell
processor has eight SPUs, the aggregated compression bandwidth
is nearly ten times larger than the obtained with a Pentium 4 proces-
sor, which has a similar overall power consumption. The superior
power efficiency of accelerators to run computationally intensive
tasks makes up for the extra effort needed to port and optimize an
algorithm to this heterogeneous architecture.

5. Experimental Results
All the experiments presented in this section have been conducted
with the Linux kernel 2.6.23 augmented with our CPC running
on a IBM QS20 Blade, which have two Cell/B.E. processors at
3200MHz and 1GBytes of RAM. Our original goal, as in (5), was
to evaluate the performance of the SPECWeb 2005 (1) benchmark,
but the network driver stops working every time we put the Blade
under high network load, so we were unable to run this benchmark.
We have finally used the IOzone (20) benchmark to evaluate the
performance of our accelerated CPC. IOzone is a filesystem bench-
mark tool that generates and measures a variety of file operations.
In these experiments we will focus on the performance of the read,
stride–read, reverse–read and re–read file operations. The read op-
eration measures the performance of reading an existing file not
already present in the system cache. After the read operation com-
pletes, the stride–read operation measures the performance of read-
ing the same file in blocks of 4KB and a stride of 200KB, so por-
tions of the file could already be present on the system cache. Af-
terwards, the reverse–read operation measures the performance of
reading the file backwards. Finally, the re–read operation measures
the performance of reading a file that have been recently read.

We have configured the IOzone benchmark to run with four
concurrent threads to simulate a multi–threaded application. Each
thread run the four afore–mentioned file operations on a file of
512 Mbytes, so the total working set is 2 Gbytes (two times the
available system memory). Each file is composed of a mix of the
Silesia corpus (16), which has a compression ratio of a 40% with
the LZO algorithm.

Figure 5 shows the performance of our CPC configured with
0%, 20%, 40%, 60% and 80% of the total system memory to store
compressed data. The first configuration shows the performance of
the plain Linux kernel, while the rest of configurations show the
performance of our CPC. The left Y axis measure the bandwidth

obtained for each of the file operations while the right Y axis
measures the effective (compressed + uncompressed) page cache
size. For each of the five configurations the performance of the four
file operations is depicted.

The performance of the read operation for the Linux Kernel is
near 15 Mbytes/s. This low value can be explained because there
are four threads reading four different files from the disk concur-
rently, so it is not possible to achieve the sequential peak perfor-
mance of the disk, which is near 50 Mbytes/s. The performance of
the stride–read operation is the worst, because the seek latencies in-
troduced by the stride read greatly reduce the effective bandwidth
from the disk. The reverse–read operation has half the performance
of the read operation, in the plain Linux kernel, as it can not benefit
from the read–ahead Linux heuristics. Note that the performance
of the reverse–read operation increases with the CPC size, because
the probability of finding data in the cache is higher when using a
larger fraction of system memory for compressed data. Finally the
re–read operation has almost the same performance of the orig-
inal read operation, because the size of the four files (2Gbytes)
do not fit in the page cache (less than 1Gbyte for this configura-
tion), and the LRU algorithm replaces the content of the files that
are in memory, before these files can be reused. The set of con-
figurations with 20%, 40% and 60% of the memory used to store
compressed data have a similar behavior. The read operation has
the same performance that the first configuration, as each bench-
mark starts with the page cache empty. The re–read operation also
has the same performance that the plain Linux Kernel because the
sizes of the page cache (1204, 1518 and 1832 Mbytes respectively)
are still smaller than the size of the working set (2Gbytes). The
stride–read operation and the reverse–read operation improve their
performance proportionally to the cache size, due to the increasing
probability to request a portion of a file that is already in the page
cache. Finally, the configuration with 80% of the memory used to
store compressed data shows the best performance for all but the
read file operation, which has the same performance that the rest
of configurations. In this configuration more than 800 Mbytes are
used to store compressed data, so with a data compression factor
of 40%, around 2000 Mbytes can be cached in a compressed form.
The compressed and uncompressed page cache accounts a total of
2100 Mbytes that is enough to cache all the working set. This ex-
plains the big performance increase in the reverse–read, stride–read
and re–read operations that are five times higher than the obtained
with the plain Linux kernel.

The results obtained show how the CPC proportionally im-
proves the performance for the experiment in which the overall
working set does not fit in memory, while it boosts the performance
by a factor of five when the working set fits in memory. Moreover,
for all the evaluated configurations (with and without memory com-
pression), the overall main CPU utilization (user+systems) was be-
tween 10% and 15%, thus the CPC does not introduce a significant
overhead to the main PPE processors of the Cell/B.E.

6. Conclusions
We implemented on the Linux OS a main memory compression
system that takes advantage of the Cell/B.E. coprocessors to per-
form the computationally intensive compression and decompres-
sion tasks. We have optimized the original LZO compression algo-
rithm to make the most of the vectorized processor units present
in the Cell/B.E. We have also extended the Linux crypto API and
the Kspu framework to be able to use several SPUs at the same time
from the Linux kernel. Moreover, our evaluation has proved the fea-
sibility and suitability of using coprocessors to offload the expen-
sive compression and decompression tasks. The IOzone benchmark
shows a speedup of up to 5x with the Linux Kernel augmented with
our compressed cache. Future work will include further research on

 0

 15

 30

 45

 60

 75

0 20 40 60 80
 0

 500

 1000

 1500

 2000

 2500

d
is

k
 b

a
n

d
w

id
th

 (
M

b
/s

)

(M
B

y
te

s
)

CPC size (% of total system memory used to store compressed data)

read
stride-read

reverse-read
re-read

system cache size

Figure 5: IOzone performance. File size 2Gbytes

the use of coprocessors to offload operating system tasks, as well
as, the role of this kind of coprocessors to lower the energy costs of
general purpose systems.

Acknowledgments
Thanks to Michael Perrone and Daniele P. Scarpazza for their
support and help with the LZO implementation for the Cell/B.E.
processor. This work has been supported by the Spanish Ministry
of Education and Science (projects TIN2007–60625), by the IBM
SoW on Adaptive Systems, as part of the BSC–IBM collaboration
agreement, and the HiPEAC Network of Excellence (IST–004408).

References
[1] Standard Performance Evaluation Corporation. SPECweb2005.

http://www.spec.org/web2005/.
[2] Bulent Abali, Mohammad Banikazemi, Xiawei Shen, Hubertus

Franke, Dan E. Poff, and T. Basil Smith. Hardware compressed main
memory: Operating system support and performance evaluation. IEEE
Trans. Comput., 50(11):1219–1233, 2001.

[3] Bulent Abali, Mohammad Banikazemi, Xiawei Shen, Hubertus
Franke, Dan E. Poff, and T. Basil Smith. Hardware compressed main
memory: Operating system support and performance evaluation. IEEE
Trans. Comput., 50(11):1219–1233, 2001.

[4] A. Alameldeen and D. Wood. Adaptive Cache Compression for High-
Performance Processors. In 31 st Annual International Symposium on
Computer Architecture, June 2004.

[5] Vicenç Beltran, Jordi Torres, and Eduard Ayguadé. Improving web
server performance through main memory compression. In ICPADS
’08: Proceedings of the 2008 14th IEEE International Conference on
Parallel and Distributed Systems, pages 303–310, Washington, DC,
USA, 2008. IEEE Computer Society.

[6] R. Cervera, T. Cortes, and Y. Becerra. Improving Application Perfor-
mance through Swap Compression. In Proceedings of the USENIX
Technical Conference (Freenix track), 1999.

[7] Rodrigo S. de Castro, Alair Pereira do Lago, and Dilma Da Silva.
Adaptive Compressed Caching: Design and Implementation. In
SBAC-PAD ’03: Proceedings of the 15th Symposium on Computer Ar-
chitecture and High Performance Computing, page 10, Washington,
DC, USA, 2003. IEEE Computer Society.

[8] Fred Douglis. The Compression Cache: Using On-line Compression
to Extend Physical Memory. In USENIX Winter, pages 519–529,
1993.

[9] Magnus Ekman and Per Stenstrom. A Robust Main-Memory Com-
pression Scheme. In ISCA ’05: Proceedings of the 32nd Annual Inter-
national Symposium on Computer Architecture, pages 74–85, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[10] Michael J. Freedman and Recitation Rivest Tr. The compression
cache: Virtual memory compression for handheld computers. Tech-
nical report, Technical report, Parallel and Distributed Operating Sys-
tems Group, MIT Lab for Computer Science, Cambridge, 2000.

[11] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

[12] Scott Frederick Kaplan. Compressed caching and modern virtual
memory simulation. PhD thesis, The University of Texas at Austin,
1999. Supervisor-Wilson,, Paul R. and Supervisor-Fussell,, Donald S.

[13] One Laptop per Child Foundation. One Laptop per Child Project.
http://laptop.org/.

[14] Rodrigo S. de Castro. Compressed Caching for Linux.
http://linuxcompressed.sourceforge.net/.

[15] Sumit Roy, Raj Kumar, and Milos Prvulovic. Improving System Per-
formance with Compressed Memory. In IPDPS ’01: Proceedings of
the 15th International Parallel & Distributed Processing Symposium,
page 66, Washington, DC, USA, 2001. IEEE Computer Society.

[16] Sebastian Deorowicz. Silesia Compression Corpus. http://www-
zo.iinf.polsl.gliwice.pl/ sdeor/silesia.html.

[17] Sebastian Siewior. Diploma thesis: Acceleration of encrypted commu-
nication using co-processors
http://diploma-thesis.siewior.net/html/.

[18] R. Brett Tremaine, T. Basil Smith, Mike Wazlowski, David Har,
Kwok-Ken Mak, and Sujith Arramreddy. Pinnacle: IBM MXT in a
Memory Controller Chip. IEEE Micro, 21(2):56–68, 2001.

[19] Irina Chihaia Tuduce and Thomas R. Gross. Adaptive Main Memory
Compression. In USENIX Annual Technical Conference, General
Track, pages 237–250, 2005.

[20] William D. Norcott and Don Capps. Iozone Filesystem Benchmark.
http://www.iozone.org.

[21] Pe Re Wilson. Operating System Support for Small Objects. In
Workshop on Object Orientation in Operating Systems, pages 80–86,
Palo Alto, CA, October 1991. IEEE Press.

[22] Wm Wulf and Sally A. McKee. Hitting the memory wall: Implica-
tions of the obvious. Technical report, University of Virginia, Char-
lottesville, VA, USA, 1994.

[23] Keun Soo Yim, Jihong Kim, and Kern Koh. Performance Analysis of
On-Chip Cache and Main Memory Compression Systems for High-
End Parallel Computers. In PDPTA, pages 469–475, 2004.

