Process Variation Tolerant 3T1D-Based Cache Architectures

Xiaoyao Liang, Ramon Canal*, Gu-Yeon Wei and David Brooks

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
*Dept. of Computer Architecture, Universitat Politecnica de Catalunya, Barcelona, Spain

{xliang,guyeon,dbrooks} @ eecs.harvard.edu, xrcanal@ac.upc.edu

Abstract

Process variations will greatly impact the stability, leakage power
consumption, and performance of future microprocessors. These
variations are especially detrimental to 6T SRAM (6-transistor
static memory) structures and will become critical with continued
technology scaling. In this paper, we propose new on-chip memory
architectures based on novel 3TID DRAM (3-transistor, 1-diode
dynamic memory) cells. We provide a detailed comparison between
6T and 3TI1D designs in the context of a L1 data cache. The effects
of physical device variation on a 3TID cache can be lumped into
variation of data retention times. This paper proposes a range of
cache refresh and placement schemes that are sensitive to reten-
tion time, and we show that most of the retention time variations
can be masked by the microarchitecture when using these schemes.
We have performed detailed circuit and architectural simulations
assuming different degrees of variability in advanced technology
nodes, and we show that the resulting memory architecture can tol-
erate large process variations with little or even no impact on per-
Sformance when compared to ideal 6T SRAM designs. Furthermore,
these designs are robust to memory cell stability issues and can
achieve large power savings. These advantages make the new mem-
ory architectures a promising choice for on-chip variation-tolerant
cache structures required for next generation microprocessors.

1. Introduction

Nanoscale technology scaling offers the promise of continuing
transistor density and performance trends. However, the road is
fraught with difficulties resulting from increased process variations
that limit performance gains and affect stability of key circuit
blocks such as on-chip memories. Addressing these problems will
require innovation from all levels in the design flow from the
devices to the system architecture. This paper investigates using
dynamic memory cells with architecture support to enable robust
cache designs tolerant to process variations for future generations
of high-performance microprocessors.

Process variation is mainly caused by fluctuations in dopant
concentrations and device channel dimensions. Gate length vari-
ation can change the effective driving capability of the transistor,
as well as the threshold voltage due to the short channel effect.
Random dopant variations can also change the threshold voltage
of the device. The nature of the semiconductor manufacturing pro-
cess gives rise to both within-die variations (i.e. device features on
one chip can be different) and die-to-die variations (i.e. device fea-
tures across chips can be different). As technology scales, within-
die variations are getting larger, significantly affecting performance
and compromising circuit reliability.

On-chip memories consume a significant portion of the overall
die space in modern microprocessors given slow off-chip memories
and due to the area efficiency and high system performance they

offer in exchange for the space and power they consume. On-
chip caches rely on SRAM cells, which have generally scaled well
with technology. Unfortunately, stability, performance, and leakage
power will become major hurdles for future SRAMs implemented
in aggressive nanoscale technologies due to increasing device-to-
device mismatch and variations. Circuit imbalance due to mismatch
can compromise cell stability and exacerbate leakage for traditional
SRAM designs. Furthermore, the large number of critical paths and
the small number of devices in each path both contribute to increase
access time variability. This variability is especially important for
higher levels of the memory hierarchy that are more latency critical.
In contrast, while lower levels of the memory (e.g., L2 cache)
are less sensitive to latency, they remain susceptible to bit flips.
One simple solution to these problems is to slow down scaling
of SRAMs at the expense of lower performance and larger area.
However, this would effectively mean the end of Moore’s Law
scaling of transistor density and speed for future processor designs.

To avoid these scaling limitations, new circuit and architec-
tural solutions are needed. In this paper, we investigate on-chip
memory architectures based on 3T1D dynamic memory cells [18].
We demonstrate a robust memory design in the context of an im-
portant latency-critical component of the processor—the L1 data
cache—identified by several researchers as one of the most sus-
ceptible architectural components to process variations [2, 11, 22].
We show how characteristics of the modern processor architecture
(e.g., superscalar, out-of-order execution) can mitigate the costs as-
sociated with dynamic memories and overcome effects of physical
device variations, while offering significant performance, stability,
and power advantages. The proposed design makes it easier to ap-
ply fine-grained variation control schemes compared to traditional
SRAM designs. Such fine-grained control is very important for
designs that suffer large within-die process variations. The paper
discusses various data retention schemes—different refresh and re-
placement policies—and provides detailed comparisons in perfor-
mance and power. This paper takes several steps in the direction of
variation-tolerant memory architecture designs. Specifically, there
are three major contributions:

e Given the transient nature of data flow, dynamic memories are
good candidates for data storage structures within the processor
core. We propose to use a 3T1D-based dynamic memory cell as
the base for a new generation of on-chip memory designs.

The proposed cache structure can tolerate very large process
variation with small or even no impact on performance by in-
telligently choosing the retention schemes. Effects of process
variations can be absorbed into a single parameter — data reten-
tion time — efficiently addressed by architectural solutions.

Besides performance benefits, the proposed caches are robust
to memory cell stability issues and can achieve large power
savings.

100%

90 %

80 %

3
c 70 %/
9 /
k3] 1 —+— Applu
C 60% —v— Crafty
5 —— Fma3d
P —=— Gzip
2 50% / —+— Mcf
€ —— Mesa
3 Twolf
o 40% = Average
o
30 %
20 %/
10 % I I I i
0 5k 10k 15k 20k

Distance (in cycles)

Figure 1. Percentage of cache reference with the elapsed clock
cycles.

In the following section, we investigate how process variations
affect traditional 6T SRAM designs and provide a detailed compar-
ison to 3T1D DRAMs. Section 3 describes the circuit and archi-
tecture simulation methodology used for the analysis presented in
Section 4, which shows how dynamic memories can lead to cache
designs tolerant to process variations. In order to thoroughly under-
stand the impact of variations, Section 5 presents a sensitivity anal-
ysis with respect to different retention time scenarios. We discuss
background information and related work in Section 6. Finally, this
work is summarized in Section 7.

2. Comparison Between 6T Static Memory and
3T1D Dynamic Memory

For decades, the 6T-based SRAM has been the de facto choice for
on-chip memory structures within the processor core such as regis-
ter files and caches. DRAM memory technologies have been used
for larger off-chip caches or main memories. These choices have
been driven primarily by the high memory access speed provided
by SRAMs and the high density provided by DRAMs. Because the
memory storage node in DRAM s is a capacitor, data is stored tem-
porarily and the memory requires periodic refresh if the data needs
to be held for extended time periods.

On the other hand, a large fraction of the data consumed in the
processor core is transient [6, 31]. As shown in Figure 1, most
cache accesses happen within the initial 6K clock cycles after
the data is loaded. As long as the data retention time of dynamic
memory can meet the system requirements, it is actually a better
choice for on-chip memory structures that provide temporary data
storage, because the temporal characteristics of the data in the
processor may reduce or even eliminate the need for refresh. In
light of 6T SRAM scaling concerns, this paper investigates the
necessary architectural support that can enable the use of dynamic
memories for on-chip L1 data caches.

2.1 Limitations of 6T SRAM Under Process Variations

Process variations can affect the access speed of an SRAM array.
A typical 6T SRAM cell is illustrated in Figure 2(a) and the read
and write operations are shown in Figure 2(b). In order to read the
stored data, one side of the cell typically discharges one of two
precharged bitlines. Any variations in the gate length or threshold

voltage in the cell’s transistors (77 or 72) can vary the current driv-
ing capability of the read path. Under within-die process variation,
each memory cell and memory line can have different speeds. Due
to design complexity limitations, it may be difficult to to apply fine-
grained access approaches to 6T SRAMs, e.g., accessing different
lines with different frequencies. In other words, one worst-case cell
in the SRAM array can overly burden design margins and timing
windows or negatively affect the speed and/or power of the entire
structure. Given the criticality of L1 cache latency, the degraded
speed of the SRAM directly translates to performance loss for the
entire microprocessor or requires overdesign of the cache to cover
worst-case corners.

In addition to the performance scalability concerns discussed
above, 6T SRAM cell stability will be a major hurdle for future
VLSI designs due to device-to-device mismatch. For reliable read
operations, transistors 7/ and 72 in Figure 2b must be carefully
sized in order to prevent nodeA from rising and inadvertently flip-
ping the bit (i.e. pseudo-destructive read). For writes, the combined
effective resistance of the access transistor 7/ and write transistor
T7 must be low enough to overcome the pull-up strength of 73 and
flip the bit. Hence, the read and write operations require a deli-
cate balance of device drive strengths to ensure proper operation.
Unfortunately, increasing device mismatch leads to imbalances in
the 6T cell that can compromise its ability to read and write re-
liably. Studies show that even a low error rate in the SRAM can
cause large performance loss [2]. Our circuit-level SRAM simula-
tions reveal bit-level flip rates on the order of 0.4% at the 32nm
technology node, similar to [2]. Although this rate appears small,
it may have large ramifications. For example, in a data cache, line-
level redundancy is straightforward to implement, but is ineffective
because 256-bit lines would experience a 64% probability of line
failure (i.e., 1-0.99625%), which is not acceptable.

Leakage power is another major concern for SRAMs. It is
well known that leakage power is poised to become the dominant
source of power consumption in future digital chips. As shown in
Figure 2(a), there are three strong-leakage paths in one 6T SRAM
cell since only one transistor is “off” along each path. There are
additional weak-leakage paths with stacked transistors along their
paths. Such an SRAM structure consumes considerable amounts of
static current in order to preserve data in the cells. To make matters
worse, process variation magnifies the leakage problem. Since there
is an exponential relation between leakage current and threshold
voltage, increasing variations in threshold voltage can cause a 5X
variation in leakage power across chips [21].

Process variation will negatively impact the speed, stability,
and leakage of traditional SRAM designs. Solutions like simply
sizing up devices have unacceptable area and power penalties.
A desire to continue the scaling trend for on-chip memories in
nanoscale technologies drives us to seek out new memory circuit
and architecture solutions.

2.2 Introduction to 3T1D DRAM

Recent circuit innovations in memory design provide an interesting
alternative to 6T cells. Luk et al. proposed a novel 3T1D DRAM
cell, which offers speed comparable to a 6T SRAM cell for a lim-
ited period of time after writing the data [18, 19]. Published re-
sults from chips fabricated in 130nm and 90nm technologies ver-
ify high-speed operation for dynamic 3T1D memories. In contrast,
widely used 1T DRAM cells have slower access times and suf-
fer from destructive reads. Hence, 3T1D cells are well-suited for
latency-critical structures while 1T cells may be more appropriate
for slower L2 caches. The proposed memory architecture in this

— —m strong leakage path
weak leakage path

T

Wordline

Bitline

Bitline
—
N

Bitline

i

T7

Write operation

Read operation

a. Leakage paths in a 6T SRAM cell

b. Read/write operation of a 6T SRAM cell

Figure 2. Traditional 6T-based SRAM cell design.

weak leakage path (ST e | e | | T e s e
Wl ead T WL, Charge to 1.1V to fire a read —»
Wl—write WLread
— cell store “1" read “1”
73— BLead cell store ‘0 ,_read ‘0" 0.6V JAANEREEY
Bluwite| ——storage node nodeS oV 0.15v
(nodeS)
T1 T2
D1 BL:cas Precharge to 1.1V
BLread i
Weliead BLcaq discharge to
\ 0.9V to fire SA
transistor connected ' -
as gated diode -

a. 3T1D DRAM cell and leakage path

b. Timing of read operation in 3T1D cell

Figure 3. 3T1D DRAM cell design and operation.

paper can scale more effectively with technology under increasing
process variations by employing intelligent data retention schemes
for these dynamic memories.

Figure 3(a) presents a schematic of the 3T1D (3-transistor, 1-
diode) DRAM cell. Due to the threshold voltage of T1, there is a
degraded level on the storage node when storing a “1”. Hence, it
relies on a “gated diode” (D1) to improve array access speed. This
diode can be thought of as being a voltage-controlled capacitor with
larger capacitance when storing a “1” and a smaller capacitance
when storing a “0.” Each time the cell is read, the bottom side of this
capacitor is also raised to VDD. If the cell stores a “1” and it is read,
the charge stored on the big capacitor of D1 boosts up the turn-on
voltage of T2, rapidly discharging the bitline. As a result, the access
speed can match the speed of 6T SRAM cells. Conversely, when a
“0” is stored, the capacitance of D1 is smaller and there is almost
no voltage boosting, which keeps T2 off during the read. Hspice
simulation results, shown in Figure 3(b), illustrate the operation of
the 3T1D cell. The gate voltage of T2 is boosted by about 1.5-2.5
times (1.13V) the originally stored voltage (0.6V) if a “1” is stored
when being read.

Although the speed of a 3T1D cell can be fast, this high-speed
access is only valid for a limited time period after each write to
the cell. This is because the charge on D1 leaks away over time.
Figure 4 shows the relationship between cell access time versus the
elapsed time after a write operation. With this stored charge leaking
away, the access time increases until finally it exceeds the array
access time of the 6T SRAM cell. Traditionally, the word “retention

time” is defined as the time a DRAM cell can no longer hold the
stored value. But in this paper, we redefine the retention time of a
3T1D memory as the time period during which the access speed
can match that of a 6T SRAM cell (from Figure 4, about 5.8us
for nominal cells). Within this retention time, the memory can be
accessed at the nominal chip frequency. After this retention time
passes, the memory cell has to be refreshed (re-written), otherwise
that cell is considered invalid.

Process variation can also impact the 3T1D memory. For exam-
ple, if the driving capability of the access transistors is reduced due
to variations, access time of the cell increases. This effect can oth-
erwise be viewed as decreasing retention time, which is shown in
Figure 4. Weaker-than-designed access transistors have the effect
of shifting the access time curve to the left and cell retention time
reduces (down to 4us). On the other hand, with stronger devices,
retention time can increase. It is important to note that process vari-
ations do not necessarily impact operating frequency, which is the
case for 6T SRAMs. In a 3T1D DRAM, process variability causes
variations in retention time to achieve the same nominal access
speed. Moreover, variations in the tags, in the speed of the decoder,
sense amplifier, and other peripheral circuitry in the memory can be
absorbed into this retention time variation. Thus, the impact of pro-
cess variations on a 3T1D memory can all be lumped into a single
variable—the retention time. As detailed in Section 4, we propose
architectural techniques to tolerate very large retention time vari-
ations and, thus, effectively reduce the impact of device process
variations in 3T1D-based memories. Furthermore, 3T1D cells do

230

220~ e b —— S A

retention time=4us retention time=5.8us

210

PS)
© o
S o

Access time (ps)
~ I
o o

160---- =% access time for nomimal 3T1D cell -
—A— access time for 3T1D cell with longer gate length (+sigma)
150{ —eo— access time for 3T1D cellwith shorter gate length (-sigma) |
140

'| --— access time for 6T SRAM cell

1 2 3 4 5 6
Time (us) passed aftera ™" is written to the storage cell

Figure 4. Relationship between access time and retention time in
3T1D cell.

not suffer the same type of cell stability issues previously seen for
6T SRAM cells, because there is no inherent fighting. Except for
the finite data retention time, a 3T1D DRAM cell is stable.

The 3T1D-based memory array also offers advantages in terms
of reduced leakage power since a 3T1D DRAM cell does not suffer
the multitude of strong leakage paths previously seen in 6T SRAM
cells. If there is a “0” stored in the cell, there is only one weak
leakage path given two stacked off transistors, shown in Figure 3a.
If there is a “1” stored, since most of the time the stored value
is a degraded value (only boosted high for a short period during
read), there is only one slightly strong leakage path. Furthermore,
if the stored charge has leaked away, the slightly strong leaking
path becomes weak. The smaller number of leakage paths leads to
lower nominal leakage and less leakage variability.

3. Experimental Methodology
3.1 Circuit and Monte-Carlo Simulation

All the delay and power data presented in this paper is derived from
Hspice circuit simulations. The minimum-size 6T SRAM cell is
based on a design available from a commercial 130nm technology
design library. In order to simultaneously accommodate 2 reads and
1 write, two additional access transistors with corresponding bit-
lines and wordlines are needed. To constrain cell size, we assume
two single-ended reads and one differential write. While this results
in 8 transistors per cell, the rest of the paper continues to refer to
these SRAM cells as 6T SRAM cells (1X 6T) to avoid confusion
with other 8T cell topologies. We designed the 3T1D DRAM cell
(schematic and layout) with the same area as the 1X 6T cell. While
the 3T1D cell can be smaller than a 1X 6T cell [18], the larger size
(equal to 6T) improves data retention times. For comparison pur-
poses, we also designed a larger 6T SRAM cell (2X 6T), where
width and length of each transistor was sized to be 2 times larger
than the devices in the 1X 6T cell. Based on these original designs,
we then scaled the designs to 65nm, 45nm, and 32nm technol-
ogy nodes. All Hspice simulations for the three technology nodes
are based on Predictive Technology Models (PTM) [32]. All wires
were scaled with respect to technology and cell area. We assume
copper wires and use distributed-m models for wire delay simula-
tion. Table 1 presents the detailed circuit parameters of our design
and the simulation temperature is set to 80° C. All of the simulation
plots in this paper are based on the 32nm technology, although we
also present results of other technology nodes in the tables.

We rely on Monte-Carlo simulations for variation analysis, sim-
ilar to approaches found in [1, 17, 21]. This method considers both
die-to-die and within-die variations, and also handles correlations
related to layout geometries using a 3-level quad tree method. Cor-
related variations affect access time, but in nanoscale technologies,
increasing dopant fluctuations exacerbate random variations, caus-
ing access time differences between cells and compromising stabil-
ity [2]. Recent experimental results verify that this method is very
accurate; it has an error of 5% [7], which is sufficient for our archi-
tectural study. We modeled both random dopant and correlated gate
length variations. Based on Friedberg’s chip measurements [9], we
assume the gate length of all the transistors in each small sub-array
are strongly correlated.

We consider two situations for variation in this paper. The typ-
ical variation assumes 0 L/Lpominai = 5% for within-die gate-
length variations and Vi /Vin,, 000 = 10% for threshold volt-
age variations. The severe variation assumes 0 L/ Lyominat = 7%
for within-die gate-length variations and o Vi /Vin,,, 000, = 15%
for threshold voltage variations. For both situations, we assume
0L/Lnominat = 5% for die-to-die gate length variation. These
assumptions are comparable to the data forecast in [4, 5].

3.2 Architecture Simulation

We assume a baseline machine with parameters listed in Table 2,
which is comparable to the Alpha 21264 and POWER4. The data
cache is a 64KB, 512-bit block size, 4-way set associative, write-
back memory, with 2 read ports and 1 write port. This cache is
divided into 8 sub-arrays of 256x256b with a cache access latency
of three cycles where one cycle is reserved to access the array.
Every pair of arrays share 64 sense amplifiers and combine to form
the 512-bit blocks. For our IPC simulations, we utilize the sim-
alpha simulator [8].

We run an exhaustive set of architecture simulations to inves-
tigate the system-level impact of process variations. For example,
each data point of Monte-Carlo simulation requires a correspond-
ing architecture simulation in order to quantify the system-level
impact of the variations. To manage this large number of simula-
tions, we use 8 of the 26 SPEC2000 benchmarks and rely on Sim-
Point for sampling [27]. Phansalkar et al. show that these 8 bench-
marks (crafty, applu, fma3d, gcc, gzip, mcf, mesa, twolf) can ade-
quately represent the entire SPEC2000 benchmark suite [24]. For
each benchmark, 100 million instructions are simulated after fast
forwarding to specific checkpoints. When we report single num-
ber results (performance or power) in this paper, they represent the
harmonic mean of the 8 simulated benchmarks.

4. Process Variation Tolerant Cache
Architectures

Based on our earlier discussion of 3T1D memory cells, this section
investigates the architectural support needed to allow 3T1D cells
to replace traditional 6T cells. 3T1D cells provide many benefits
compared to traditional 6T memory cells, but present challenges
that must be overcome with system-level support. The major is-
sue associated with 3T1D memories is the limited data retention
time and variations of this retention time. Given the relationship
between access latency and retention time, the cell can only hold
the data for a short time period to ensure the fast-access require-
ment of on-chip memories. This paper discusses several approaches
to accommodate this limited retention time with periodic data re-
freshing, retention-time driven replacement policies, allowing data
to expire (no refresh), and combinations thereof.

Technology node | Min. size cell area for cache | Wire width | Wire thickness | Oxide thickness | Chip frequency
65nm 0.90um? 0.10um 0.20um 1.2nm 3.0GHz
45nm 0.45um? 0.07um 0.14um 1.1nm 3.5GHz
32nm 0.23um? 0.05um 0.10um 1.0nm 4.3GHz
Table 1. Parameters for circuit simulation.
Configuration Parameter Value Configuration Parameter Value

Issue Width 4 instructions Issue Queues 20-entry INT, 15-entry FP
Load Queue 32-entries Store Queue 32-entries

Reorder Buffer 80-entry I-Cache, D-cache 64KB, 4-way Set Associative
Instruction TLB 128-entry Fully-Associative | Data TLB 128-entry Fully-Associative
Integer Functional Units 4 FUs Floating Point Functional Units 2FUs

L2 Cache 2MB 4-way Branch Predictor 21264 Tournament Predictor

Table 2. Baseline processor configuration.

To present a clear view of our scheme, we first study the 3T1D
cache without considering any variations. Cell-to-cell variations in
retention times required by each 3T1D memory cell exacerbate the
retention time problem. Hence, we investigate several variation-
tolerant strategies.

4.1 3TI1D cache without considering process variation

The simplest way to provide support for data retention in 3T1D
caches is to use a global refresh scheme. Refresh operations require
aread and a subsequent write back to the memory. A rudimentary
refresh mechanism would add an extra read/write port specifically
dedicated for refresh. However, this approach suffers considerable
area and power overhead. Instead, as shown in Figure 5(a), we opt
for less costly refresh mechanisms that leverage existing ports in
the memory used for normal access. Whenever a refresh is needed,
one read and one write port are blocked from normal cache accesses
and are used to refresh the data. The refresh mechanism pipelines
these read and write accesses on consecutive cycles. However, this
approach introduces a performance penalty, because the refresh op-
eration competes with normal instructions. We encapsulate the re-
fresh into each sub-array of the cache. For a 512-bit cache line,
we refresh 64 bits per cycle, limited by the number of sense am-
plifiers in the cache. In parallel, the tag array can be refreshed as
well. It takes 8 clock cycles to refresh one cache line, thus, requir-
ing 2K cycles to complete the refresh (for a 256-line sub-array). In
our 32nm 4.3GHz machine, this requires 476.3ns. A global counter
is used to generate a global refresh signal according to the reten-
tion time of the cache. During refresh, one read and one write port
are blocked and this block signal is passed back to the scheduler to
delay normal load/store operations.

Our circuit simulation shows the cache retention time is about
6000ns under the 32nm technology node. This means the refresh
only takes about 8% (476.3ns/6000ns) of cache bandwidth. Be-
cause cache traffic is usually no more than 30% on average, the
under-utilization of the architecture can be leveraged to hide refresh
operations and result in negligible performance loss. Our detailed
architecture simulations report less than 1% performance loss for

such a configuration. Also, there is only one global counter needed
for refresh and hence the hardware overhead is negligible.

4.2 Dealing with typical variation, global refresh scheme

We first consider the impact of process variations on traditional
6T SRAM caches. Figure 6(a) shows the performance of the 6T
SRAM cache with typical process variations. With 1X 6T cells, the
frequency and hence performance for most chips lose about 10%
to 20% compared to the ideal design. Even when using the 2X 6T
cells, 20% of chips still suffer about 3% of performance loss (the
.975 bar in the plot).

In contrast, process variations introduce retention time varia-
tions in the 3T1D caches. For each fabricated cache, the memory
cell with the shortest retention time determines the retention time of
the entire structure. The top plot in Figure 6(b) presents a histogram
of retention time distribution for the 3T1D cache given typical pro-
cess variations. Although all of the chips are designed with the
same parameters, they exhibit a wide retention time spread due to
process variations. However, the middle plot of Figure 6(b) shows
that the processor performance only varies by about 2% with reten-
tion time varying from 714ns to 3094ns. Significant performance
loss is observed only when retention time falls below 500ns. In
this figure, 97% of the 3T1D caches only lose less than 2% of per-
formance compared with an ideal 6T design. Even for the worst-
performing benchmark (fma3d), the performance penalty is less
than 4%. The resulting insight is that out-of-order processors can
tolerant large retention time variations. Since physical device vari-
ations cause retention time variation in the caches, the architecture
of the processor can help to mitigate the impact of process varia-
tions.

Therefore, compared to a SRAM design, a 3T1D cache achieves
much better performance for comparable yields. However, this
increased performance comes at the expense of additional dynamic
energy consumption due to refresh. The dynamic power overhead
is from 1.3-2.25X of the ideal 6T design, shown in the bottom plot
of Figure 6(b).

While dynamic power may be larger, leakage power tends to
dominate cache structures at 32nm. The advantages of 3T1D for

to scheduler

refresh pulse
generation
refresh rate =

W 476.3n/retention

time

refresh pulse

-1l

chip clock

cache refresh ID

generation
insert refresh block signal
operation to block one rd/wr
cache array port

L1 data cache array

a. global refresh scheme for cache

to processor

way 4
ways3l~ T T T T T T T T 1|
. ___]
way | 2_: _____________ !
way 1| 1| | :
- way switch |
‘ line counter control : | :
|
o o Lo
Loy
| |
L1 data by
¢ | cache | o Lo
— — by
L] | | |
° . : L
| |
- |
line counter —

MUX
MUX Nyay2

way1
|
data cross bar
b. line-level refresh schemes for cache, shaded blocks
only used in RSP-FIFO and RSP-LRU schemes

Figure 5. Proposed cache architectures for global and line-level schemes.

4
N

°

Chip probability

0.775 0.8 0.825 0.85 0.875 09 0950975 1 1.0251.05

Normalized freauency (performance)

a. 6T cache frequency/performance distribution
(1X 6T, 2X 6T)

476 714 952 1190 1428 1666 1904 2142 2380 2618 2856 3094

Cache retention time (ns)

2

Z 031 T T ° 1

E
0.98

90250 ---4-—---- I - £

a £

=3 $096

FEIEEEEEEN [| BEhErEaEEEE B 2§

(&} 0.94

T i
i i
- -
i i
500ns /! ! —&— mean perf. for 3T1D 1
| U 2 M Ety Eiy Aty Aty | T
h H : : : : : perf. for 3T1D (worst-case benchmark) :
IR i 1 1 1 T T T i T i
476 714 952 1190 1428 1666 1904 2142 2380 2618 2856 3094

N4
[N

Dynamic power
o

o
o

—®— normal operation dyn. pwr. for 3T1D
—4— refresh dyn. pwr. for 3T1D
—&— fotal dyn. pwr. for3T1D

f
476 714 952 1190 1428 1666 1904 2142 2380 2618 2856 3094
Cache retention time (ns)

b. 3T1D cache retention time distribution, performance
and dynamic power

Figure 6. Distribution, performance and power for 6T and 3T1D caches

leakage become more prominent. As a result, the lower leakage
afforded by 3T1D cells leads to an overall reduction in cache
power. Figure 7 compares the distribution of leakage power in the
presence of process variations. For the 1X 6T cache, more than
50% of the chips exhibit leakage power greater than 1.5X of the
original design and some chips show more than 10X leakage. For
the 3T1D cache, only about 11% of the chips have leakage greater
than that of the golden 6T design and it never exceeds 4X. Realistic
dynamic power numbers derived from access patterns given by the
architectural simulator for our cache structure show that leakage
power is significantly higher than dynamic power at the 32nm
technology node. Given this disparity, the 3T1D’s leakage power
reduction far outweighs the small increase in dynamic power. It is

important to note that predictive technology models do not include
advanced leakage-mitigation technologies such as metal gates with
high-K dielectrics introduced at the 45nm node. For comparison,
our leakage power results are comparable to the POWERG in the
65nm node where leakage is shown to be as high as 42% [10].
Table 3 provides a detailed summary of simulation data for the
cache designs across different technology nodes. Comparing the
performance of 1X 6T design with the ideal SRAM design, there is
approximately one generation of performance loss. In contrast, the
performance of 3T1D scales well and there is still room for future
scaling. Typical 3T1D chips can also save about 64% of cache
power consumption compared with the ideal 6T SRAM design.

ideal 6T, no variation 1X sized 6T, typical variation, median chip 3TID, typical variation, median chip
Tech. | Access | Perf. Mean Full Leakage | Access | Perf. Mean Full Leakage | Retention | Perf. Mean Full Leakage
node time (BIPS) | Dyn. Pwr | Dyn. Pwr | Power time (BIPS) | Dyn. Pwr | Dyn. Pwr | Power time (BIPS) | Dyn. Pwr | Dyn. Pwr | Power
65nm | 285ps | 2.91 4.30mw | 31.97mw | 15.8mw | 370ps | 2.33 3.44mw 25.29mw | 15.8mw | 4000ns 2.89 5.98mw 29.93mw | 3.36mw
45nm | 251ps | 3.39 341mw 25.96mw | 36.0mw | 315ps | 2.82 2.83mw 21.55mw | 36.0mw | 2900ns 3.37 4.85mw 24.65mw | 5.68mw
32nm | 208ps | 4.17 2.78mw | 20.75mw | 78.2mw | 251ps | 3.50 2.39mw 19.21mw | 78.2mw | 1900ns 4.14 4.08mw 20.30mw | 24.4mw
Table 3. Detailed simulation data of cache for three technology nodes
0.4 T T T T T 0.451
- - leakage power for golden 6T — median chip
203 I 1X 6T 04 - - bad chip
z i == good chip
©
S 02 %
s 0.35 .
o Y
< A)
O 0.1 2
-. 03 .
= .
0 5 :
0.25X 05X 11X 15X 2X 3X 4x 6X 8X 10X 12X 80.25 .
Leakage power g .
a. Cache leakage power distribution for 1X 6T 2 9o .
0.4 T T T T T T T T T £ .
i - - leakage power for golden 6T 2 .
! 3T1D [}
z03 ' - S0.15 3
= o d
3 [}
g o1 .
g 0.2 - '!
2 [y
S 0.1 0.05 .
‘/
~, ~,
0 L L ~ J
0.25X 05X 1X 15X 2X 38X 4X 6X 8X 10X 12X 500 1500 2500 3500 4500

Leakage power
b. Cache leakage power distribution for 3T1D

Figure 7. Cache leakage power distribution with process varia-
tions

4.3 Dealing with severe variation, line-level schemes

One major disadvantage of the 6T SRAM cache is that the speed
of the slowest cells determines the operating frequency of the en-
tire structure. Due to clock generation and synchronization limi-
tations, it is very challenging to access each cache line using dif-
ferent clock frequencies. The proposed global refresh scheme for
the 3T1D cache suffers a similar disadvantage, because the worst
memory cell determines the retention time of the entire structure.
Although the global refresh scheme works well for typical process
variations, it loses its effectiveness given severe process variations.
To illustrate this problem, we select three specific chips for further
analysis: one “good” chip with process corners that result in longest
retention time, one median chip, and one “bad” chip with process
corners that result in shortest retention times. We plot histograms
of the retention time of cache lines for the three chips, shown in
Figure 8. This plot illustrates the wide retention time distribution
among different cache lines even within a single chip. Up to 23% of
the cache lines in the bad chip and 3% of the cache lines in the me-
dian chip are considered to be “dead lines,” because their retention
time is zero. These dead cache lines cannot function properly under
severe variations. Retention time of the whole cache in the global
scheme is limited by the worst cache lines, so for both the bad and
the median chips, the retention time has to be set to zero and those
chips must be discarded. Our simulations show that about 80% of
the chips must be discarded, because they contain at least one line
that cannot function due to very short retention times. This ineffi-
ciency arises because the global scheme is too coarse grained and

Retention time (ns)

Figure 8. Retention time distribution of cache lines for best, worst
and median chips under severe variations.

cannot distinguish differing retention time requirements of each
cache line. Due to significant within-die variations, retention times
can differ greatly across the cache lines. To address this spread, we
need to find more fine-grained schemes that can avoid this “one-
kill-all” situation. Also, explicit global refresh introduces signifi-
cant dynamic power overhead to the system, which ought to be re-
duced. Since the operating frequency can remain constant for 3T1D
memories and only retention time varies, it is much easier to apply
line-level schemes compared with traditional SRAMs.

4.3.1 Line-level Refresh Policies

In this section, we evaluate line-level refresh schemes (word-level
refresh is also possible, but is not studied due to the excessive hard-
ware overheads). Line-level refresh requires each line to be tagged
with a retention time (which is defined by the lowest retention time
of the cells in that line, so that no data is lost during the retention
time). In terms of hardware budget, line-level refresh requires an
extra counter per line to individually keep track of retention times.
The line counter is reset once a new data block is loaded to the
cache line and starts counting. Once it counts to the line reten-
tion time, that line is no longer useful and needs to be refreshed or
evicted depending on different schemes. All line counters are syn-
chronized to a global clock, which is a fraction (1/N) of the chip
frequency. This means the minimal time step of the line counter
is N cycles. N can be set according to difference variation condi-
tions. For example, larger retention time requires larger /N so that
for the counter with the same number of bits, it can count more.
We estimate that the 3-bit line counters add about 10% hardware

overhead to the design and the power overhead is shown later. Af-
ter fabrication, the retention time of each individual cache line must
be determined and stored in the line counters. To test the cache, a
built-in self test structure can load a pattern of “Is” into the cache
and keep reading out the contents of each line until the line fails
to give correct value. The amount of time required to fail reading
the “1s” pattern is recorded as the line retention time. Although dy-
namic testing is possible, we assume worst-case temperatures to set
retention times in this paper.

Refreshing the cache lines will increase their lifetime, which
can be beneficial to system performance. On the other hand, fre-
quent refreshes block normal cache accesses and reduces the effec-
tive bandwidth, which can degrade system performance. To further
study this problem, we consider a wide spectrum of possible refresh
policies. These range from from refreshing each individual line to
completely avoiding refresh and relying on the inclusion properties
of the cache to recover data from the L2. We also consider partial
refresh schemes that are a hybrid of these two schemes. We have
identified three schemes in the spectrum:

No-refresh: We evaluate a technique that does not refresh any
cache lines. Thus, whenever the retention time of that cache line
reaches a low threshold, the line is evicted. While write-through
caches do not require any action, write-back caches require dirty
data to be written to the L2 cache. In the pathological scenario
where many dirty lines expire simultaneously, write-back traffic
can cause the write buffer to stall. To ensure data integrity, dirty
lines waiting for eviction are refreshed during this stall. The only
hardware overheads are the line counters and control logic.

Partial-refresh: This technique tracks the retention time of each
line. If the retention time is below a specific threshold, that line will
be refreshed and it will stay alive until passing the threshold time.
Any lines with retention time larger than the threshold will not be
refreshed. This means that just a subset of the lines are refreshed
depending on their distinct retention times. This scheme guarantees
that all of the lines have a lifetime longer than the threshold before
they are evicted. Whenever a line requires refresh, it asserts a signal
for refresh. It is possible that multiple lines will assert for refresh at
the same time. To handle these cases, we implement a token scheme
which iterates through lines tagged for refresh in the cache. A line
can obtain refresh only when it asserts the refresh signal and has
the token. This scheme has the possibility of delaying the refresh
of some lines that do not receive the token immediately. To ensure
data integrity, we conservatively set the retention time counter to
guarantee each line will receive the token before expiring. Partial
refresh requires the one bit token and extra control logic to generate
the refresh assertion signal, which only require 3-4 logic gates. The
complexity of this scheme is slightly higher than the no-refresh
scheme.

Full-refresh: All lines of the cache will always be refreshed
before the retention time expires. The refresh scheme is similar to
the partial-refresh scheme. The only difference is that all of the
cache lines are refreshed and there is no threshold time.

4.3.2 Replacement Policies

The cache line replacement policy also provides an important ap-
proach to support the data retention requirements of the 3T1D
cache. In a conventional cache, typically a LRU (Least Recently
Used) replacement policy is implemented. This policy always se-
lects the least used block, which may not be the best choice for
3T1D caches. Under process variations, lines within each set may
have different retention times, and if the no-refresh scheme is im-
plemented, then it is very likely that the lines with smaller retention

times may be “free” most of the time (since their data are evicted
more regularly than lines with longer retention times). As seen from
the line usage of the benchmarks in Figure 1, we can see that on av-
erage, most of the accesses (90%) to a line are concentrated in its
first 6K cycles of lifetime. Thus, it is likely not effective to assign
the newly-loaded data to the lowest retention time way since the
data may not be retained in the cache for sufficient time. Thus, we
propose three replacement policies that are sensitive to the retention
time requirements of 3T1D-caches.

Dead-Sensitive-Placement (DSP): We know that some cache
lines may have zero retention time and are “dead” due to within-
die variations. In this paper, we also treat a cache line as dead if
its retention time is less than the minimal time step (V) of the line
counter. This policy replaces lines in a manner that avoids using
the dead lines. When replacing, the lines are handled similar to a
conventional LRU, but no dead lines will be used. For example, in a
4-way cache with one dead line, the replacement policy will always
make use of the other three ways. In the worst case, given a set
with all ways dead, those accesses/replacements will miss the L1
cache and incur a corresponding L2 access. Not being aware of the
dead lines can significantly degrade system performance, because
those dead lines will be mistakenly treated as being useful and the
processor will take for granted that there is valid data in the dead
lines. This can lead to a large number of cache misses and increase
the occurrences of replay and flush in the pipeline.

Retention-Sensitive-Placement-FIFO (RSP-FIFO): This policy
logically organizes the lines in each set in a FIFO scheme. The
order of the lines in the FIFO is in descending retention times.
Thus, “new” blocks are assigned the longest retention time line,
and the blocks in that set are moved to the next longest retention
time line. The data held in the lowest retention time line is evicted.
This scheme relies on the theory that most cache accesses happen
within the initial period after the data is loaded. Moving newly
loaded data into longer retention time locations can greatly reduce
the number of cache misses resulting from expired retention times.
This mechanism intrinsically incorporates a refresh since every
new block inserted into the cache results in the existing blocks in
that set moving to new lines (with smaller retention times). When
accessing the cache, all ways are read; thus, the overhead includes
that of writing back those lines into a different way. This operation
requires multiplexors so that data can be switched between the
different ways, as depicted in the shaded blocks in Figure 5(b). For
example, in our 4-way cache design, we use a 4-to-1 MUX. Besides
the multiplexors, we need to configure switch control registers for
each cache set at test time, since the variations of each cache set
can be different. Our circuit estimates anticipate an additional 7%
hardware overhead for the this logic. It takes 8 cycles to move a
512-bit line with 64 sense amplifiers.

Retention-Sensitive-Placement-LRU (RSP-LRU): This tech-
nique is similar to the previous one, but in this case the most-
recently-accessed block is kept in the longest retention time line.
Thus, every read or write (hit or miss) may shuffle lines among the
ways in order to keep them in the appropriate order (highly active
blocks reside in the higher retention time lines). This scheme relies
on the theory that data accessed in the cache will likely be accessed
again in the near future (temporal locality). This scheme keeps the
most recently access data in the location with longest retention
time, improving the possibility of a cache hit. This scheme is com-
plex because the line shuffling occurs more frequently compared to
RSP-FIFO, which only shuffles lines on cache evictions.

[good chip
Hl median chip
~| I bad chip r

Performance

no partial full no partial full

RSP-FIFO RSP-LRU

refresh refresh refresh refresh refresh refresh

LRU DsP

Figure 9. Normalized performance of retention schemes for good,
median and bad chips.

These replacement policies are orthogonal to the previously
proposed refresh policies. We now discuss hybrid combinations of
the refresh policies and replacement policies.

4.3.3 Combining Refresh and Replacement Policies

Given the refresh policies and replacement polices, in this sec-
tion we analyze interesting combinations of the aforementioned
policies. The cross-product of the three refreshing schemes (no-
refresh, partial-refresh, full-refresh) and the four replacement poli-
cies (LRU, DSP, RSP-LRU, RSP-FIFO) would provide a total of
12 techniques to evaluate. However, we can reduce that set to 8
if we consider that the placement policies RSP-LRU and RSP-
FIFO do not need to be augmented with a refresh policy since
they already implement an intrinsic refresh (i.e. when moving
lines). Thus, we will evaluate the previously cited RSP-LRU and
RSP-FIFO, plus the remaining six combinations: no-refresh/LRU,
partial-refresh/LRU, full-refresh/LRU, no-refresh/DSP, partial-
refresh/DSP and full-refresh/DSP.

We generated 100 sample chips under severe process variations.
To evaluate the efficiency of all schemes, we pick the same three
chips discussed in Figure 8 for analysis. We have analyzed the
performance of these chips for the eight schemes described above
and plot the performance relative to an ideal 6T cache design in
Figure 9.

The performance difference for the different line-level retention
schemes is most relevant for the worst chip. In this case, the tech-
niques that only implement the conventional LRU replacement pol-
icy suffer significant performance losses due to a large number of
dead line references. This behavior is also observed for the good
and median chip, but to a much smaller extent. Recognizing the
presence of these dead lines can significantly reduce cache misses
due to the unwanted accesses to invalid lines and avoid the subse-
quent pipeline replay. At the same time, we can see that the partial-
refresh mechanisms increase performance when available by 1-2%
(e.g. no-refresh/LRU vs. partial-refresh/LRU, and no-refresh/DSP
vs. partial-refresh/DSP). If the number of lines refreshed is ex-
tended to the entire cache (full-refresh), then the effect of blocking
loads and stores for refreshing the cache introduces a performance
penalty (1%). Thus, performance decreases when moving from the

N

o
©
s3]

—— no-refresh/LRU | [
—— partial-refresh/DSP | | l
—— RSP-FIFO } | !

(]
©
-
‘
‘
‘
‘
‘
‘
‘
‘
‘
b--a
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
.
:
‘
‘
‘
‘
‘
‘
‘
‘
L_.
‘
‘
‘
‘
‘
‘
‘
i
‘
—

Normalized performance

Chip ID
< 1.8p T
o ! —=— no-refresh/LRU ! !)
§_ ' —— partial-refresh/DSP ! ! !
> 180 —— RSP-FIFO e H
s | : : ‘:
el ' |
° T
['
N I
= |
E o
<} ' v
z | |
1 Il Il Il Il Il Il
1 20 0 Chip ID 80 100

Figure 10. Normalized performance and power of 100 chips for
three line-level schemes (sorted by descending performance of no-
refresh/LRU).

partial-refresh schemes to the corresponding full-refresh schemes.
The results provide an important insight: cache refresh may not
always improve performance. Only refreshing lines with short re-
tention time while keeping other lines intact often outperforms full-
refresh. Finally, we see that the combination of a placement policy
with an intrinsic refresh scheme (RSP-LRU and RSP-FIFO) pro-
duce the most performance benefits. The advantage comes from
the more intensive use of cache lines with longer retention time,
which can help to reduce the average miss rate of the 3T1D cache.

To simplify the remainder of the analysis in this paper, we
choose one technique for each placement scheme: no-refresh/LRU,
partial-refresh/DSP, and RSP-FIFO. These techniques represent a
broad spectrum of combinations. The first (no-Refresh/LRU) rep-
resents the simplest line-level scheme and requires the least amount
of modification to a conventional cache design. The second (partial-
refresh/DSP) scheme has the benefit of avoiding dead lines and re-
freshing a subset of the lines. These results use a 6K-cycle threshold
for the partial-refresh scheme. The third scheme, RSP-FIFO, rep-
resents the family of more complex schemes but, at the same time,
offers the best performance.

4.3.4 Detailed Evaluation of the Schemes

Each of the three schemes rely on different characteristics of the
cache architecture and program behavior. For comparison, we per-
form detailed performance and power simulations with our cycle-
accurate architecture simulator. For this analysis, we use the entire
set of 100 randomly generated chips suffering severe variations.

Figure 10 (upper) plots the performance of all chips using the
three schemes. All of the chips can still function even under severe
variations with a small performance penalty. In contrast, 80% of
the chips must be discarded when using the global scheme under
the same amount of variations, and the 6T cache would suffer
a 40% frequency loss. Furthermore, almost every cache line in
a conventional 6T cache would contain unstable cells given this
amount of process variations. This amount of instability would be
difficult to overcome using redundancy and ECC mechanisms. In
comparison, the line-level retention policies are able to overcome
the large amount of variations in the memory.

| T
I I
o | |
Q 095 - --—---- Ho— B i = é [T R i e 54
S : : g g
E o ideal6T I é g
S gl | 4morefreswirU |4 L < N e = e P =
‘E : —— partial-refresh/DSP | L= | <«
—+ RSP-FIFO | D —+— no-refresh/LRU | 5
A~ I | Ay —+— partial-refreshDSP | | fa) | |
i i —+— RSP-FIFO | —= ideal6T i
085 - - ------ To--— - R = 085 - - - - -=== T - q-------- — 085 — — —{ = norefreshlRU [~ - — - ——————— =
			—+— partial-refresh/DSP
			—+— RSP-FIFO
			7
N | | o | | o | |
1 2 4 8 1 2 4 8 1 2 4 8
Associativity Associativity Associativity
a. good chip b. median chip c. bad chip

Figure 11. Performance of good, bad and median chips using three line-level scheme with different associativities.

Compared with the other two schemes, no-refresh/LRU scheme
incurs the largest performance penalty. This is due to the fact that
the no-refresh/LRU scheme tracks the retention time for each cache
line, but does not include any special refresh or replacement policy.
On the other hand, no-refresh/LRU scheme has the least hardware
overhead and control mechanism among the three schemes.

Both RSP-FIFO and partial-refresh/DSP schemes have superior
performance over the other schemes with a performance penalty
of less than 3% for all 100 chips. In fact, most of the chips incur
less than 1% performance loss. Although the two schemes rely on
different insights, both schemes track the retention time variation
in the different cache ways. Partial-refresh/DSP avoids using the
dead ways in a cache set, while RSP-FIFO will always make most
use of cache ways with longer retention times. Compared with
partial-refresh/DSP, RSP-FIFO is a finer-grained scheme because it
distinguishes the different retention times of each cache way (more
information stored) while partial-refresh/DSP only knows whether
a cache way is dead or not (less information stored).

To illustrate the importance of cache parameters on the perfor-
mance of the three schemes, we picked the same good, median, and
bad chips in the previous section and plot the performance for dif-
ferent associativities in Figure 11. The performance difference be-
tween the three schemes is small for good and median chips. But for
bad chips, suffering significant variations, RSP-FIFO and partial-
refresh/DSP significantly outperform no-refresh/LRU for associa-
tive caches. We see that 2- and 4-way set associative caches are able
to provide enough flexibility to accommodate the dead lines and for
retention-sensitive replacement schemes to function properly. For
direct-mapped caches, the replacement polices have no effect and,
thus, the only performance benefits arise from the refresh policies.

The line-level retention schemes all include mechanisms to re-
duce the overhead that the global refresh scheme incurs by continu-
ous refresh. Figure 10 (bottom) plots the dynamic power consump-
tion of the three line-level schemes. These power estimates include
all power overheads incurred for the schemes and is normalized
to the dynamic power consumption of an ideal 6T cache. For ex-
ample, the no-refresh/LRU scheme consumes additional power for
line counters and may incur additional L2 cache accesses when
a line’s retention period expires and the data is required again.
The power overhead for the no-refresh scheme is less than 20%,
while for some bad chips (e.g., chip #100), the overhead can be as
high as 60%. Many of the cache lines in the bad chips have very
short retention times and incur frequent L1 misses, which con-
sequently increases the power overhead of extra L2 accesses. In
contrast, we find that the chips using the RSP-FIFO and partial-

refresh/DSP schemes have less than 10% power overhead. Al-
though both of these schemes incur overheads from line counters
and refresh power, they make more efficient use of cache ways with
longer retention times, greatly reducing L1 misses. The RSP-FIFO
policy also incurs a power overhead to switch or move data blocks
between the different ways when necessary. Compared to the global
scheme, which has 30%-125% dynamic power overhead, all the
schemes shown here are much more efficient in terms of dynamic
power, and enjoy leakage power benefits similar to those discussed
in Section 4.2

5. Sensitivity Study

In the previous section, we showed the effectiveness of the cache
architecture under typical and severe process variations at the 32nm
technology node. In order to gain a thorough understanding of
the impact of retention time variation on system performance, we
sweep different p and o/ of retention time, where p is the mean
retention time of all the cache lines in a chip and o is the standard
derivation of the retention time. To simplify the problem, in this
section, we will not consider die-to-die variations but only focus
on within-die variation. We only consider retention time variations
among cache lines in one single chip.

Figure 12 presents surface plots of system performance for
different © and o/p combinations. We assume the mean retention
time p can change from 2K to 30K clock cycles, and o /p can vary
from 5% to 35%. Depending on the process technology, supply
voltage, and severity of process variations, a real design can be
located at different points on the surface plot.

We can draw several conclusions from the Figure 12. First, we
see that o/ has a larger impact on system perfromance than p.
In other words, variance of retention time has larger impact than
the mean retention time. The large performance penalty is mostly
due to the number of dead lines in a particular chip. The number
of dead lines increases quickly with larger variance, making the
cache less efficient. There is a sudden performance drop with o/
larger than 25%, which means the proposed cache can tolerate large
retention time variations among different cache lines. Second, for
the same o /p, larger p helps to improve the performance. Larger
1 means the active lines can have a larger retetion time so they can
meet the system requirement with less or no refresh. Third, dead
line sensitive and retention sensitive schemes behave much better
than a no-refresh scheme for almost all of the points on the plot.
The difference between dead line sensitive and retention sensitive
is minor. However, since dead line sensitive schemes have smaller
hardware overhead, we consider them most hardware efficient.

pointl: 65 nm typical variation, 1.1V
point4: 32 nm severe variation, 1.1V

1PC

a. no-refresh/LRU

point2: 45 nm typical variation, 1.1V
point5: 32 nm typical variation, 0.9V

b. partial-refresh/DSP

point3: 32 nm typical variation, 1.1V
point6: 32 nm severe variation, 0.9V

1IPC

c. RSP-FIFO

Figure 12. p-o/p-performance plot for three schemes

In this figure, we also marked some real design points so that
readers can get a feeling for how this plot corresponds to real de-
signs. For example, point 4 corresponds to a chip implemented in
a 32nm technology suffering severe process variations with a 1.1V
supply. Point 2 corresponds to a chip implemented in a 45nm suf-
fering typical variation with a 1.1V supply. Process, supply volt-
age, and the amount of process variations will change the ¢ and
w of retention time and, thus, affect system performance. We can
see the trend of how performance varies with respect to the pro-
cess technology, voltage, and amount of variation. For example,
point 1, point 2, and point 3 show performance somewhat degrades
with technology scaling since retention times decrease. Point 3 and
point 5 reveal that scaling voltage to lower levels also impacts re-
tention times and degrades performance. Clearly, as the severity of
process variations gets worse, performance also suffers. The pro-
posed cache architecture can achieve satisfactory performance for
most of the points, but under worst-case assumptions (point 6) there
can be considerable performance loss. Hence, continued innova-
tions at all layers of design (process technology, circuit design, ar-
chitectural techniques) are needed to push future chips to the upper
corner. For example, continued development and progress in pro-
cess technologies to address leakage power concerns, such as metal
gate devices with high-K dielectrics, can also significantly improve
3T1D mean retention time and variance. It is important to point out
that severe conditions, such as point 6, would prevent conventional
SRAM caches from achieving comparable performance.

6. Related Work

In recent years, process variation has been identified as one of the
key threats to continued Moore’s Law scaling, with projections that
a technology generation of performance can be lost due to process
variations [5]. Also, there are serious concerns about the continued
scalability of SRAM-based memories [3]. Several groups have pro-
posed solutions to patch stability issues due to process variations in
memory designs that use 6T SRAM cells [14, 25].

Recently, researchers have begun to explore the system-level
impact of variations on power, performance, and reliability. Initial

work in this area has focused on the modeling of process varia-
tions [26]. Researchers have shown that the selection of pipeline
depth [4, 15] and other microarchitectural parameters, at design
time, can significantly impact the susceptibility of an architecture to
process variations. Variable-latency techniques have been proposed
for caches, register files, and pipelined logic structures [22, 17, 29].
Globally-asynchronous, locally synchronous (GALS) design tech-
niques may offer ways to mitigate the impact of correlated within-
die variations [20]. Agarwal et al. propose to resize caches in re-
sponse to variation-induced failures after fabrication [2].

The integration of 1T DRAM memories within microprocessors
has been proposed as a means to increase the effective bit density
of on-chip cache memories [28, 16, 23]. In these approaches, bit
density is the primary goal and the use of 1T memories and tra-
ditional refresh policies is sufficient, although Lee et al. [16] pro-
pose a selective invalidation scheme for a 1 T-DRAM based instruc-
tion memory allowing portions of the memory to be invalidated if
not read or written during a time period. The concept of utilizing
transient data has been applied to low-power design. The RAPID
project uses a software approach to reduce the refresh power of
commodity off-the-shelf DRAMs by allocating memory to pages
of DRAM which require less frequent refresh operations [30]. The
decay cache provides a fine-grained leakage control scheme by en-
abling Vdd-gating on a per-line basis after specified time inter-
vals [13]. Juang et al. recognized that quasi-static 4T cells could
be used to avoid the need to implement Vdd-gating transistors and
demonstrate power savings benefits in a decaying branch predic-
tor [12]. None of the above works consider the impact of process
variations and, hence, they do not consider the variety of line-level
retention time mechanisms that we consider. Our work proposes to
replace on-chip SRAM with 3T1D DRAM memories, with the spe-
cific target of combating process variations. The proposed memory
architecture provides advantages in terms of cell stability, reduced
power requirements, and the ability to tolerate performance vari-
ations by intelligently leveraging the computer architecture. This
approach provides a comprehensive solution to many of the issues
that will impact on-chip memory designs in nanoscale process tech-
nologies.

7. Conclusion

Microprocessors tolerant to process variations in future nanoscale
technologies will be at the forefront of innovation for years to
come. This paper proposes novel process variation tolerant on-chip
memory architectures based on a 3T1D dynamic memory cell. The
3T1D DRAM cell is an attractive alternative to conventional 6T
cells for next-generation on-chip memory designs since they offer
better tolerance to process variations that impact performance, cell
stability, and leakage power.

Two categories of schemes (refresh and placement) have been
proposed for one the most important on-chip memory structures —
the L1 data cache. By leveraging under-utilization of architectural
resources, transient data characteristics, and program behavior, sig-
nificant performance and power benefits have been demonstrated
for 3T1D memories in comparison to 6T SRAM memories. Un-
der typical variations, the proposed schemes perform within 2% of
the performance assuming ideal 6T memories. Under severe vari-
ations, where 6T SRAM caches would suffer a 40% reduction in
frequency, the schemes presented can perform with less than 4%
performance loss and offer inherent extra benefits of reducing leak-
age power. These promising results suggest that 3T1D memories
can replace existing on-chip 6T memories as a comprehensive so-
lution to deal with process variations.

Acknowledgments

This work was supported by NSF grants CCF-0429782 and CCF-
0702344; the Fulbright program; the Generalitat de Catalunya
(2005SGR00950); and the Ministerio de Educacion y Ciencia
(TIN2004-07739-C02-01). The authors thank Hillery Hunter from
IBM, Gabe Loh from Georgia Tech., and anonymous reviewers for
their detailed comments and suggestions.

References

[1] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing analysis for
intra-die process variations with spatial correlations. In International
Conference on Computer-Aided Design, November 2003.

[2] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy. A
process-tolerant cache architecture for improved yield in nanoscale
technologies. [EEE Transactions on Very Large Scale Integration
Systems, 13(1), January 2005.

[3] A. J. Bhavnagarwala, X. Tang, and J. D. Meindl. The impact of
intrinsic device fluctuations on CMOS SRAM cell stability. /EEE
Journal of Solid-State Circuits, 36(4), April 2001.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and
V. De. Parameter variation and impact on circuits and microarchitec-
ture. In 40th Design Automation Conference, June 2003.

[5] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration. Journal of Solid-State Circuits,
37(2), February 2002.

[6] D. Burger, J. Goodman, and A. Kagi. The declining effectiveness
of dynamic caching for general-purpose microprocessors. Technical
Report TR-1216, U.W.-Madison, Computer Science, 1995.

[7] B. Cline, K. Chopra, and D. Blaauw. Analysis and modeling of CD
variation for statistical static timing. In International Conference on
Computer-Aided Design, November 2006.

[8] R. Desikan, D. Burger, S. Keckler, and T. Austin. Sim-Alpha: a
validated, execution-driven Alpha 21264 simulator. In 7R-01-23, CS
Department, University of Texas, 2001.

[9] P. Friedberg, W. Cheung, and C. J. Spanos. Spatial variability
of critical dimensions. In Proceedings of VLSI/ULSI Multilevel
Interconnection Conference, 2005.

[10] J. Friedrich et al. Design of the Power6 microprocessor. In
International Solid-State Circuits Conference, Feb 2007.

[11] E. Humenay, D. Tarjan, W. Huang, and K. Skadron. Impact of
parameter variations on multicore architectures. In Workshop on

Architectural Support for Gigascale Integration (ASGI-06, held in
conjuction with ISCA-33), 2006.

[12] P. Juang, K. Skadron, M. Martonosi, Z. Hu, D. W. Clark, P. W.
Diodato, and S. Kaxiras. Implementing branch predictor decay using
quasi-static memory cells. IEEE Transactions on Architecture and
Code Optimization, June 2004.

[13] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting
generational behavior to reduce cache leakage power. In Proceedings
of the International Symposium on Computer Architecture, 2001.

[14] M. Khellah, Y. Ye, N. S. Kim, D. Somasekhar, G. Pandya, A. Farhang,
K. Zhang, C. Webb, and V. De. Wordline and bitline pulsing schemes
for improving SRAM cell stability in low-Vcc 65nm CMOS designs.
In 2006 Symposium on VLSI Technology and Circuits, June 2006.

[15] N. S. Kim, T. Kgil, K. Bowman, V. De, and T. Mudge. Total power-
optimal pipelining and parallel processing under process variations
in nanometer technology. In International Conference on Computer-
Aided Design, November 2005.

[16] D. Lee and R. Katz. Using cache mechanisms to exploit nonrefreshing
DRAMSs for on-chip memories. Journal of Solid-State Circuits,
26(4):657-661, April 1991.

[17] X. Liang and D. Brooks. Mitigating the impact of process variations
on processor register files and execution units. In 39th IEEE
International Symposium on Microarchitecture, December 2006.

[18] W. K. Luk, J. Cai, R. H. Dennard, M. J. Immediato, and S. V.
Kosonocky. A 3-transistor DRAM cell with gated diode for enhanced
speed and retention time. In 2006 Symposium on VLSI Technology
and Circuits, June 2006.

[19] W. K. Luk and R. H. Dennard. A novel dynamic memory cell with
internal voltage gain. Journal of Solid-State Circuits, 40(4), April
2005.

[20] D. Marculescu and E. Talpes. Variability and energy awareness: A
microarchitecture-level perspective. In DAC-42, June 2005.

[21] K. Meng and R. Joseph. Process variation aware cache leakage
management. In International Symposium on Low Power Electronics
and Design, October 2006.

[22] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. Yield-
aware cache architectures. In 39th IEEE International Symposium on
Microarchitecture, December 2006.

[23] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A case for intelligent
RAM. IEEE Micro, 17(2):34-44, 1997.

[24] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measuring
program similarity: Experiments with SPEC CPU benchmark suites.
In IEEE International Symposium on Performance Analysis of Systems
and Software, March 2005.

[25] H. Pilo, J. Barwin, G. Braceras, C. Browning, S. Burns, J. Gabric,
S. Lamphier, M. Miller, A. Roberts, and F. Towler. An SRAM design
in 65nm and 45nm technology nodes featuring read and write-assist
circuits to expand operating voltage. In 2006 Symposium on VLSI
Technology and Circuits, June 2006.

[26] B. F. Romanescu, S. Ozev, and D. J. Sorin. Quantifying the impact of
process variability on microprocessor behavior. In 2nd Workshop on
Architectural Reliability, 2006.

[27] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In International
Conference on Architectural Support for Programming Languages
and Operating Systems, October 2002.

[28] D. Somasekhar, S.-L. Lu, B. Bloechel, K. Lai, S. Borkar, and V. De. A
10Mbit, 15GBytes/sec bandwidth 1T DRAM chip with planar MOS
storage capacitor in an unmodified 150nm logic process for high
density on-chip memory applications. In 31st European Solid-State
Circuits Conference, September 2005.

[29] A. Tiwari, S. R. Sarangi, and J. Torrellas. Recycle: Pipeline adaptation
to tolerate process variation. In Proceedings of the International
Symposium on Computer Architecture, 2007.

[30] R. K. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware
placement in DRAM (RAPID): Software methods for quasi-non-
volatile DRAM. In 12th International Symposium on High-
Performance Computer Architecture, February 2006.

[31] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for estimating
trace-sample miss ratios. In ACM SIGMETRICS, June 1991.

[32] W. Zhao and Y. Cao. New generation of predictive technology model
for sub-45nm design exploration. In /IEEE International Symposium
on Quality Electronic Design, 2006.

