Impact of Traffic Profile on the Performance of Spatial Superchannel Switching in SDM Networks

B. Shariati(1)(2), D. Klonidis(1), D. Siracusa(3), F. Pederzolli(3), J. M. Rivas-Moscoso(1), L. Velasco(2), I. Tomkos(1)

(1) Athens Information Technology (AIT), Marousi 15125, Greece (b.shariati@ait.gr)
(2) Universitat Politècnica de Catalunya, Barcelona, Spain, (3) CREATE-NET (CN), Trento, Italy

Abstract We compare the performance of three SDM switching paradigms under different traffic profiles. We show that their performance is highly traffic dependent. We also show that increasing the spectral switching granularity, significantly improves the performance of spatial group switching.

Introduction
Space division multiplexing (SDM) over multi-core fibers (MCF), multi-mode fibers (MMF), few-mode multi-core fibers (FM-MCF), or even bundles of single mode fibres (SMF)s, would allow the network capacity to scale to orders of magnitude higher than what can be achieved with current infrastructure and to address the anticipated vast traffic growth

The majority of the SDM related research is focused on fibre technology and transmission performance in order to increase the overall "capacity × reach" factor. However, in order to exploit the potential SDM networking benefits and make it applicable to future networks, it is essential to introduce cost-effective node solutions with spatial (in addition to spectral) switching capabilities. Such SDM switching paradigms could include the following cases:

(a) independent switching (Ind-Sw), where all spectral slices and spatial modes/cores can be independently directed to any output port; (b) joint switching (J-Sw), where all spatial modes/cores are jointly switched, while spectral slices are freely switched; and (c) fractional joint switching (FrJ-Sw), where a number of S/G spatial subgroups (each of G spatial modes/cores out of total S modes/cores per fibre), as well as the spectral slices, can be independently switched to all output ports. A detailed comparison of these switching schemes was performed in for an offline network planning scenario. The study considered a specific traffic matrix with a limited number of demands. The comparison revealed that J-Sw and FrJ-Sw can achieve cost saving up to 50% and 40%, respectively, compared to Ind-Sw at the expense of reduced switching flexibility. However, our study showed that under high traffic load the networking performance in terms of spectrum utilization for the case of FrJ-Sw and J-Sw (i.e. spatial group switching options) almost converges to that of Ind-Sw.

The assumed traffic profile (i.e. large aggregated demands) is the most typical traffic profile in core networks today, as we have traffic aggregation at the edge of the network. However, due to the introduction of application-centric services and dependency of traffic increase on i) the type of network (access/metro/core), ii) the services offered by the network (e.g. 4G/5G connectivity, FTTX, TV on-demand), and iii) the type of offered applications (e.g. file sharing, video conferencing), traffic de-aggregation will be a possible networking policy. Therefore, in this paper, we want to study the cases in which lightpaths might be established based on i) a large number of small demands (typically seen in regional part of networks), ii) a small number of large demands (applicable for example in inter-datacentre communications), and iii) any combinations of last two options (found e.g. in national scale networks serving heterogeneous type of traffic demands).

In this paper, we thoroughly evaluate the impact of various traffic profiles and dimensioning approaches on the performance of SDM switching paradigms, in an online operation scenario. We show that the performance of the three SDM switching paradigms is highly dependent on the traffic profile. While J-Sw shows similar performance as Ind-Sw for large demands, it presents a reduced performance when network is fed by a large number of small demands. However, we show that the performance of the J-Sw can improve substantially when the spectral granularity of the switching paradigm is reduced.

SDM Switching Paradigms vs. SDM Fibers
Ind-Sw can be realized with a node architecture that comprises a number of conventional wavelength-selective switches (WSS), one per spatial dimension degree and ingress/egress port (Fig.1a). Commercially available 1×9 or 1×20 WSSs can be employed.

FrJ-Sw and J-Sw require a redesign of the WSSs to operate as S×((I×O)) WSSs, i.e. they direct I input ports, each carrying S spatial modes/cores, toward O output ports. By making
In this study we use the Spanish national network of Telefónica. It comprises 30 nodes (average nodal degree 3.7, max. 5), 14 of which build in add/drop capability (A/D), as well as 56 links with an average length of 148 km. In order to have a fair comparison among the three SDM switching paradigms, regardless of any transmission medium related performance constraints, bundles of 12 SMFs were considered for all links in the network. Moreover, based on the network characteristics and the related performance evaluation studies, DP-8QAM at 32-Gbaud was chosen as the modulation format offering the best compromise between transmission reach and spectral efficiency. A 50-GHz channel spacing is used except in the last study (Fig. 5).

According to the above and considering an available spectrum per fibre equal to 4.8 THz (C-band) on the ITU-T 12.5-GHz grid, discrete event simulation studies were carried out for the purpose of performance evaluation. More specifically, the routing, space, and spectrum allocation (RSA) problem is solved with a k-shortest path (k = 3) and spatial and spectral resource allocation algorithm, that follows a first-fit strategy, starting with the shortest computed path. The load generation followed a Poisson distribution process. Traffic demands for each source-destination pair were generated randomly following a normal distribution with mean μ and standard deviation σ over the range of study, namely 50 Gbps to 2.25 Tbps. Blocking Probability (BP) was used as a quantitative performance measure.

Results and Discussions

In the first part of the study, we consider three traffic profiles corresponding to the three previously mentioned cases: small, large and medium-size demands. The distribution of demands for the 3 different mean demand values and fixed σ is shown in Fig.2a, while the effect of the deviated demands over a fixed

Fig. 1: Node architectures, for $S=4$ and $D=3$, enabling a) Ind-Sw, b) FrJ-Sw with $G=2$, and c) J-Sw. Only 1 degree is shown. Ind-Sw, FrJ-Sw with $G=2$, and J-Sw require eight 1×3, four 2×6, and two 4×12 WSSs per degree, respectively. Below each case, its suitable fiber types is provided.

Fig. 2: CDFs of the assumed traffic profiles with (a) fixed $\sigma=200$ Gbps and $\mu=700$, 1150, and 1600 Gbps, (b) fixed $\mu=1248$ Gbps, and $\sigma=96$, 192, 384, 768 Gbps

Fig. 3: BP in terms of average number of live connections per A/D node for three profiles of traffic forming of small, large and medium size demands which their distributions are plotted in Fig. 2: a) $\mu=1600$, b) $\mu=1150$, and c) $\mu=700$ Gbps.
mean value is shown in Fig. 2b. The lower and upper mean values were chosen according to the following: a) For $\mu=700$ Gbps, 98% of demands requires less than half of the 12 spatial dimensions (i.e. bundles of SMFs in our case study) to be allocated. b) For $\mu=1600$ Gbps, we have large aggregated demands that result in more than 98% of them requiring more than half of the 12 spatial dimensions to be allocated. The three traffic profiles of Fig. 2a are used to obtain the results shown in Fig. 3. It is noted that in all cases traffic dimensioning is realized by varying the number of live connections per A/D node. For high mean traffic demands (Fig. 3a), the three switching paradigms show the same performance. Since most demands require more than half of the spatial resources, the unutilised resources of FrJ-Sw and Ind-Sw cases cannot be allocated thus leading to the same results as the J-Sw case. For a traffic profile with diverse and relatively medium-size demands (Fig. 3b), FrJ-Sw and Ind-Sw start performing better than J-Sw in terms of BP, since now part of the incoming demands that require less than 6 spatial dimensions to be allocated can fit within the free spatial resources that FrJ-Sw and Ind-Sw enable them to use. For small mean traffic demands (Fig. 3c) the performance difference between J-Sw and FrJ-/Ind-Sw is more pronounced, since the allocation options in space dimension are increased and small demands can fit in available spatial slots.

Previous discussion on Fig. 3 strongly suggests that the optimal switching paradigm for an SDM network, in fact, depends on the nature of its traffic, specifically whether there is a prevalence of relatively small or large demands. However, since most of the demands in the core networks are aggregated traffics, J-Sw would be a suitable choice, considering its cost benefit. In order to see the impact of traffic diversity on the performance of SDM switching paradigms, a complementary set of simulations is carried out, where the traffic dimensioning is done by varying σ and keeping μ and the number of live connections fixed (Fig. 2b). Note, in this study, the total offered load to the network during the whole range of the simulation is fixed to 14^*12^*1248 Gbps ≈ 1.95 Pb/s.

Results plotted in Fig. 4 show that at the beginning the performance of three SDM switching is the same (similar to Fig. 3a), and by increasing σ which is equivalent to the diversity level of the traffic profile, Ind-Sw and FrJ-Sw show a remarkable improvement which justifies their suitability for networks with high level of diversity in their traffic profile. As shown in Fig. 3 and 4, J-Sw despite its cost benefits, shows reduced performance in case of large number of relatively small demands. However, since WSSs allow fine switching granularity (i.e. 25 or 12.5 GHz), we investigated the performance when the spatial Sp-ch occupies 25 or 12.5 GHz spectrum. As shown in Fig. 5, the performance improve significantly when switching granularity increased.

Conclusions
We investigated the suitability of three SDM switching paradigms for different traffic profiles. We found that, for the case of bundles of SMFs, Ind-Sw and FrJ-Sw perform well for networks with high level of traffic diversity, while J-Sw is a favourable option for networks with large demands, considering also its cost benefit. However, J-Sw can perform significantly better in high diverse traffic scenarios, if spatial Sp-Chs occupy smaller spectral width which can be switched by WSSs with finer granularity.

Acknowledgements
The authors would like to thank Dr. Pouria Sayyad Khodashenas. This study was partially funded by EU INSPACE (N.619732) and the Spanish MINECO SYNERGY projects (TEC2014-59995-R).

References
[5] Concept paper of ACINO project (http://www.acino.eu/)