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Abstract

This work presents and evaluates a novel processor mi-
croarchitecture which combines two paradigms: access/
execute decoupling and simultaneous multithreading. We
investigate how both techniques complement each other:
while decoupling features an excellent memory latency
hiding efficiency, multithreading supplies the in-order is-
sue stage with enough ILP to hide the functional unit laten-
cies. Its partitioned layout, together with its in-order issue
policy makes it potentially less complex, in terms of critical
path delays, than a centralized out-of-order design, to sup-
port future growths in issue-width and clock speed.

The simulations show that by adding decoupling to a
multithreaded architecture, its miss latency tolerance is
sharply increased and in addition, it needs fewer threads to
achieve maximum throughput, especially for a large miss
latency. Fewer threads result in a hardware complexity re-
duction and lower demands on the memory system, which
becomes a critical resource for large miss latencies, since
bandwidth may become a bottleneck.

1. Introduction

Dynamic scheduling is a latency tolerance technique
that can hide much latency of memory and functional units.
However, as memory latencies and issue widths continue
to grow in the future, dynamically scheduled processors
will need larger instruction windows. As reported in [4],
the hardware complexity of some components in the criti-
cal path that determines the clock cycle time may prevent
centralized architectures to scale up to faster clock frequen-
cies. Therefore, several architectures have been proposed
recently, either in-order or out-of-order, which address this
problem by partitioning critical components of the archi-
tecture and/or providing less complex scheduling mecha-
nisms [7, 1, 3, 4, 10]. This work focuses on one of these
partitioning strategies: the access/execute paradigm [6],
which was first proposed for early scalar architectures to
provide them with dual issue and a limited form of dynamic

scheduling that is especially oriented to tolerate memo
latency.

On the other hand, simultaneous multithreading h
been shown to be an effective technique to boost ILP [
In this paper, we analyze its potential when implement
on a decoupled processor.

We show in this study that the combination of decou
pling and mulithreading takes advantage of their best fe
tures: while decoupling is a simple but effective techniqu
for hiding high memory latencies with a reduced issu
complexity, multithreading provides enough parallelism
hide functional unit latencies and keep them busy. In ad
tion, multithreading also helps to hide memory latenc
when a program decouples badly. However, since dec
pling hides most memory latency, few threads are need
to achieve a near-peak issue rate. This is an important
sult, since having few threads reduces the memory pr
sure, which is a major bottleneck in multithreading arch
tectures, and reduces the hardware cost and complexit

The rest of this paper is organized as follows. Section
quantifies the latency hiding effectiveness of decouplin
Section 3 describes and evaluates a multithreaded dec
pled architecture. Section 4 summarizes the main conc
sions.

2. Latency Hiding Effectiveness of Decoupling

Since the interest of decoupling is closely related to
ability to hide memory latencies without resorting to othe
more complex issue mechanisms, we have first quantifi
such ability for a wide range of L2 cache latencies, from
to 256 cycles. We have evaluated a 4-way issue, sing
threaded, decoupled architecture with 4 general purpo
functional units and a 2-port L1 data cache. The latenc
and other architectural parameters are those of Figure 2

The baseline single-threaded decoupled architect
consists of two superscalar decoupled processing units:
Address Processing unit (AP) and the Execute Process
unit (EP). Precise exceptions are supported by means o
reorder buffer, a graduation mechanism, and a register
naming map table. The Instruction Queue in the EP allo

the AP to execute ahead of the EP, providing the necessary
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slippage between them to hide the memory latency, and
Store Address Queue allows loads to bypass stores.
these experiments, the sizes of all the architectural que
and physical register files are scaled up proportionally
the L2 latency.

The instruction stream, which is based on the DEC A
pha ISA, is dynamically split: instructions are dispatched
either the AP or the EP following a simple steering mech
nism based on their data type (int or fp), except for memo
instructions, which are all sent to the AP. Although th
rather simplistic scheme mostly benefits to numerical pr
grams, it still provides a basis for our study which is main
focused on the latency hiding potential of decoupling an
its synergy with multithreading. Techniques to decoup
integer codes can be found elsewhere [5].

Since one of the main arguments for the decoupled a
proach is the reduced issue logic complexity, each thre
issues instructions in-order within each processing unit.
may be argued that in-order processors have a limited
tential to exploit ILP. However, current compiling tech
niques can extract much ILP and thus, the compiler c
pass this information to the hardware instead of using ru
time schemes (this is the approach that emerging EPIC
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Figure 1-a:  FP loads. Figure 1-b:

Figure 1-d: Impact of latency on performance.
chitectures take [2]).
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The experiments consisted of a set of trace driven cyc
by-cycle simulations of the SPEC FP95 benchmark sui
The traces were obtained by instrumenting the DEC Alp
binaries with the ATOM tool, and running them with thei
largest available input data sets. However, due to the de
of the simulations, we only run 100M instructions of eac
benchmark, after skipping the initial start-up phase.

In addition to the IPC, we have also measured separat
the average “perceived” latency of integer and FP lo
misses, i.e., the average number of stall cycles of instru
tions that use data from a previous uncompleted load. Sin
we are interested in the particular benefit of decoupling, i
dependently of the cache miss ratio, this average does
include load hits.

The perceived latency of FP load misses measures
EP stalls caused by misses, and reveals the “decoupled
havior” of a program, i.e., the amount of slippage of the A
with respect to the EP. As shown in Figure 1-a, except f
fpppp, more than 96% of the FP load miss latency is alwa
hidden. The perceived latency of integer load misses m
sures the AP stalls caused by misses, and it depends on
ability of the compiler to schedule integer loads ahead
other dependent instructions. As shown in Figure 1-b,fpp-
pp, su2cor, turb3dandwave5are the programs that experi
ence the largest integer load miss stalls.

Regarding the impact of the L2 latency on performan
(see Figure 1-d), although programs such asfpppp or
turb3d perceive much load miss latency, they are hard
performance degraded due to their extremely low miss
tios (see Figure 1-c). The most performance degraded p
grams are those with both high perceived miss latency a
significant miss ratios:hydro2d, wave5 andsu2cor.

To summarize, performance is little affected by the L
latency when either it can be hidden efficiently (tomcatv,
swim, mgrid, appluandapsi), or when the miss ratio is low
(fpppp and turb3d), but it is seriously degraded for pro-
grams that lack both features (su2cor, wave5andhydro2d).
2 L
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of program decoupling, while that of integer loads relies
exclusively on the static instruction scheduling.

3. A Multithreaded Decoupled Architecture

A multithreaded decoupled architecture (Figure 2) sup-
ports multiple hardware contexts, each executing in a de-
coupled mode. The fetch and dispatch stages - including
branch prediction and register map tables - and the register
files and queues are replicated for each context. The issue
logic, functional units and caches are shared by all the
threads. Up to 8 instructions from different threads can be
issued per cycle to 8 general purpose functional units. All
the threads are allowed to compete for each of the 8 issue
slots each cycle, and priorities among them are round-robin
(similar to thefull simultaneous issuescheme reported in
[9]). Each cycle, only two threads have access to the I-
cache, and each of them can fetch up to 8 consecutive in-
structions (or up to the first taken branch). The two chosen
threads are those with less instructions pending to be dis-
patched (similar to the RR-2.8 with I-COUNT schemes, re-

Early experiments revealed that in a single-threaded
chitecture most of the wasted issue slots are caused by
data dependences between EP register operands, due t
restricted ability of the in-order issue model to exploit ILP
Therefore, as far as decoupling hides memory latency a
multithreading supplies enough amounts of parallelism
remove the remaining stalls, we expect important synerg
tic effects between these two techniques in a hybrid arc
tecture.

For the experiments in this section, the multithreade
decoupled architecture parameters are those in Figur
The simulator is fed with independent threads. Each thre
consists of a sequence of traces from all SpecFP95 p
grams, in a different order for each thread.

3.1. Sources of Wasted Issue Slots

The first column pair in Figure 3 represents the case
a single thread, showing that the major bottleneck is caus
by the EP functional units latency, as discussed abo
When two more contexts are added, multithreading dras
cally reduces these stalls in both units, and produces a 2
speed-up (from 2.68 IPC to 6.19 IPC). Since with 3 threa
the AP functional units are nearly saturated (90.7%), neg
gible speed-ups are obtained by adding more contexts (6
IPC is achieved with 4 threads).

Note that although the AP almost achieves its maximu
throughput, the EP functional units are not saturated due
the load imbalance between the AP and the EP. Therefo
the effective peak performance is reduced by 15%, from
to 6.8 IPC. This problem could be addressed with a diffe
ent issue width in each processor unit, but this is beyond
scope of this study.

Another important remark is that when the number
threads is increased, the combined working set is larg
and the miss ratios increase progressively, putting high
demands on the external bus bandwidth. On average, th
are more pending misses, which increases the effect

Memory Subsystem

AP EP

Store
Address
Queues

Figure 2: Scheme and main parameters of
the multithreaded decoupled processor

Instruction
Queues

Fetch, Dispatch & Rename

AP functional units 4 (latency = 1 cycle)
EP functional units 4 (latency = 4 cycles)
Control speculation at AP 4 unresolved branches
L1 on-chip I-cache 2 ports, infinite
L1 on-chip data cache 4 ports, lockup-free (16 MSHRs),

64 KB, dir.map., 32 byte/line, write back, 1 cycle hit
L2 off-chip cache infinite, multibanked, 16 cycle hit
L1-L2 interface 128-bit wide bus, 16 bytes/cycle.

Per thread:
AP physical registers 64
EP physical registers 96
Instruction Queue 48 entries
Store Address Queue 32 entries
BHT 2K entries x 2 bit

Reg.
Files

Reg.
Files

Register
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Figure 3: issue slots breakdown
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erands from memory(Figure 3). However, in the AP, since
integer loads are much less frequent than fp loads, the
ditional parallelism provided by multithreading eliminate
almost all of this kind of stalls.

3.2. Latency Hiding Effectiveness

Multithreading and decoupling are two different ap
proaches to tolerate high memory latencies. We have
some experiments to quantify the latency tolerance o
multithreaded decoupled processor for 1 to 4 threads. In
dition, some other experiments are also carried out to
veal the contribution of each mechanism to the latency h
ing effect. They consist of a set of identical runs on a d
generated version of our multithreaded architecture whe
the instruction queues are disabled (i.e. a non-decoup
multithreaded architecture).

Figure 4-a shows the average perceived load miss lat
cy, when varying L2 latency from 1 to 256 cycles for the
configurations (combinations of 1 to 4 threads with/with
out decoupling). This metric expresses the average num
of cycles that an instruction that uses a load value cannot
sue although there is a free issue slot. It can be seen that
coupling hides almost all memory latency, even when it
very high, whereas multithreading helps very little.

Figure 4-b shows the corresponding relative perfo
mance loss (with respect to the 1-cycle L2 latency) of ea
of the 8 configurations. Notice that this metric compare
the tolerance of these architectures to memory laten
rather than their absolute performance. Several conclusi
can be drawn from these graphs. First, it is shown that wh
the L2 memory latency is increased from 1 to 32 cycles, t
decoupled multithreaded architecture experiences perf
mance drops of less than 4%, while the performance deg
dation observed in all non-decoupled configurations
greater than 23%. Even for a huge memory latency of 2
cycles, the performance loss of the decoupled configu
tions is lower than 39% while it is greater than 79% for th
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Figure 4: (a) Perceived latency. (b) Relative IPC loss.
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Second, multithreading provides some additional late
cy tolerance improvement, especially in the non-decoup
configurations, but it is much lower than that provided b
decoupling.

Some other conclusions can be drawn from Figure 4
While multithreading raises the performance curves, d
coupling makes them flatter. In other words, while th
main effect of multithreading is to provide more paralle
ism, the major contribution to memory latency toleranc
which is related to the slope of the curves, comes from d
coupling, and this is precisely the specific role that deco
pling plays in this hybrid architecture.

3.3. Reduction in Hardware Contexts

Multithreading is a powerful mechanism that highly im
proves the processor throughput, but it has a cost: it ne
a considerable amount of hardware resources. We have
some experiments that illustrate how decoupling reduc
the required number of hardware contexts.

We have measured the performance of several config
rations having from 1 to 7 contexts, for a decoupled mul
threaded architecture and a non-decoupled multithread
architecture (Figure 5, solid lines). While the decouple
configuration achieves the maximum performance wi
just 3 or 4 threads, the non-decoupled configuration nee
6 threads to achieve similar IPC rates.

Multithreading is usually claimed to be able to sustain
high processor throughput, even in systems with a hi
memory latency. Since hiding a longer latency may requ
a higher number of contexts and this has a strong nega
impact on the memory performance, the reduction in ha
ware context requirements obtained by decoupling may b
come a key factor when L2 memory latency is high. To i
lustrate this fact, we have run a similar experiment for 1
16 contexts and a L2 memory latency of 64 cycles. A
shown in Figure 5 (dotted lines), while the decoupled a
chitecture achieves the maximum performance with jus

or 5 threads, the non-decoupled architecture cannot reach a
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similar performance with any number of threads, because it
would need so many that they would saturate the external
L2 bus: the average bus utilization is 89% for 12 threads,
and 98% for 16 threads. Moreover, note that the decoupled
architecture requires just 3 threads to achieve about the
same performance as the non-decoupled architecture with
12 threads. Thus, decoupling significantly reduces the
amount of thread-level parallelism required to reach a cer-
tain level of performance.

To summarize, decoupling and multithreading comple-
ment each other to hide memory latency and increase
throughput with reduced amounts of thread-level parallel-
ism and low issue logic complexity.

4. Summary and Conclusions

In this paper we have analyzed the synergy of multi-
threading and access/execute decoupling. A multithreaded
decoupled architecture takes advantage of the latency hid-
ing effectiveness of decoupling, and the potential of multi-
threading to exploit ILP. We have analyzed the most im-
portant factors that determine its performance and the syn-
ergistic effect of both paradigms.

A multithreaded decoupled architecture hides efficient-
ly the memory latency: the average perceived load miss la-
tency is less than 5 cycles in the worst case (with 4 threads
and a L2 latency of 256 cycles). We have also found that,
for L2 latencies lower than 32 cycles, their impact on the
performance is quite low: less than 4% IPC loss, relative to
the 1-cycle latency scenario, and it is quite independent of
the number of threads. On the other hand, this impact is
greater than a 23% IPC loss if decoupling is disabled. This
latter fact points out that decoupling is the main contributor
to memory latency tolerance.

The architecture reaches maximum performance with
very few threads, significantly less than in a non-decoupled
architecture. The number of simultaneously active threads

the hardware chip area and complexity, which may com
promise the clock cycle.

Reducing the number of threads also reduces the ca
conflicts and the required memory bandwidth, which
usually one of the potential bottlenecks of a multithread
architecture. We have shown that if decoupling is disable
the external L2 bus bandwidth becomes a bottleneck wh
the miss latency is 64 cycles, which prevents the proces
from achieving the maximum performance for any numb
of threads.

In summary, we can conclude that decoupling and m
tithreading techniques complement each other to expl
parallelism and to hide memory latency. A multithreade
decoupled processor obtains its maximum performan
with few threads, has a reduced issue logic complexity, a
it is hardly performance degraded by a wide range of L2 l
tencies. All of these features make it a promising altern
tive for future increases in clock speed and issue width.
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