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Abstract

This work presents and evaluates a novel processor mi-
croarchitecture which combines two paradigms: access/
execute decoupling and simultaneous multithreading. We

investigate how both techniques complement each other:

while decoupling features an excellent memory latency
hiding efficiency, multithreading supplies the in-order is-
sue stage with enough ILP to hide the functional unit laten-
cies. Its partitioned layout, together with its in-order issue
policy makes it potentially less complex, in terms of critical
path delays, than a centralized out-of-order design, to sup-
port future growths in issue-width and clock speed.

The simulations show that by adding decoupling to a
multithreaded architecture, its miss latency tolerance is
sharply increased and in addition, it needs fewer threads to
achieve maximum throughput, especially for a large miss
latency. Fewer threads result in a hardware complexity re-

scheduling that is especially oriented to tolerate memory
latency.

On the other hand, simultaneous multithreading has
been shown to be an effective technique to boost ILP [9].
In this paper, we analyze its potential when implemented
on a decoupled processor.

We show in this study that the combination of decou-
pling and mulithreading takes advantage of their best fea-
tures: while decoupling is a simple but effective technique
for hiding high memory latencies with a reduced issue
complexity, multithreading provides enough parallelism to
hide functional unit latencies and keep them busy. In addi-
tion, multithreading also helps to hide memory latency
when a program decouples badly. However, since decou-
pling hides most memory latency, few threads are needed
to achieve a near-peak issue rate. This is an important re-
sult, since having few threads reduces the memory pres-
sure, which is a major bottleneck in multithreading archi-

duction and lower demands on the memory system, which tectyres, and reduces the hardware cost and complexity.

becomes a critical resource for large miss latencies, since
bandwidth may become a bottleneck.

1. Introduction

Dynamic scheduling is a latency tolerance technique
that can hide much latency of memory and functional units.

However, as memory latencies and issue widths continue

to grow in the future, dynamically scheduled processors
will need larger instruction windows. As reported in [4],

the hardware complexity of some components in the criti-
cal path that determines the clock cycle time may prevent

centralized architectures to scale up to faster clock frequen-
cies. Therefore, several architectures have been proposedf

recently, either in-order or out-of-order, which address this
problem by partitioning critical components of the archi-

tecture and/or providing less complex scheduling mecha-
nisms [7, 1, 3, 4, 10]. This work focuses on one of these
partitioning strategies: the access/execute paradigm [6],
which was first proposed for early scalar architectures to
provide them with dual issue and a limited form of dynamic

The rest of this paper is organized as follows. Section 2
guantifies the latency hiding effectiveness of decoupling.
Section 3 describes and evaluates a multithreaded decou-
pled architecture. Section 4 summarizes the main conclu-
sions.

2. Latency Hiding Effectiveness of Decoupling

Since the interest of decoupling is closely related to its
ability to hide memory latencies without resorting to other
more complex issue mechanisms, we have first quantified
such ability for a wide range of L2 cache latencies, from 1
to 256 cycles. We have evaluated a 4-way issue, single-
threaded, decoupled architecture with 4 general purpose
unctional units and a 2-port L1 data cache. The latencies
and other architectural parameters are those of Figure 2.

The baseline single-threaded decoupled architecture
consists of two superscalar decoupled processing units: the
Address Processing unit (AP) and the Execute Processing
unit (EP). Precise exceptions are supported by means of a
reorder buffer, a graduation mechanism, and a register re-
naming map table. The Instruction Queue in the EP allows
the AP to execute ahead of the EP, providing the necessary
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Figure 1-a: FP loads. Figure 1-b: Integer loads. Figure 1-c: Miss Ratios
The experiments consisted of a set of trace driven cycle-
o by-cycle simulations of the SPEC FP95 benchmark suite.
% The traces were obtained by instrumenting the DEC Alpha
= binaries with the ATOM tool, and running them with their
% largest available input data sets. However, due to the detail
3 of the simulations, we only run 100M instructions of each
;’ benchmark, after skipping the initial start-up phase.
S In addition to the IPC, we have also measured separately
%E) the average “perceived” latency of integer and FP load
S misses, i.e., the average number of stall cycles of instruc-
-60 11— : k tions that use data from a previous uncompleted load. Since
11632 64 128 256 we are interested in the particular benefit of decoupling, in-
L2 Latency (cycles) dependently of the cache miss ratio, this average does not
Figure 1-d: Impact of latency on performance. include load hits.

The perceived latency of FP load misses measures the

slippage between them to hide the memory latency, and the gp stalls caused by misses, and reveals the “decoupled be-
Store Address Queue allows loads to bypass stores. Forpyior” of a program, i.e., the amount of slippage of the AP
these experiments, the sizes of all the architectural queuesyjth respect to the EP. As shown in Figure 1-a, except for

and physical register files are scaled up proportionally to
the L2 latency

The instruction stream, which is based on the DEC Al-
pha ISA, is dynamically split: instructions are dispatched to
either the AP or the EP following a simple steering mecha-
nism based on their data type (int or fp), except for memory
instructions, which are all sent to the AP. Although this
rather simplistic scheme mostly benefits to numerical pro-
grams, it still provides a basis for our study which is mainly
focused on the latency hiding potential of decoupling and
its synergy with multithreading. Techniques to decouple
integer codes can be found elsewhere [5].

Since one of the main arguments for the decoupled ap-
proach is the reduced issue logic complexity, each thread
issues instructions in-order within each processing unit. It
may be argued that in-order processors have a limited po-
tential to exploit ILP. However, current compiling tech-
niques can extract much ILP and thus, the compiler can
pass this information to the hardware instead of using run-

fpppp more than 96% of the FP load miss latency is always
hidden. The perceived latency of integer load misses mea-
sures the AP stalls caused by misses, and it depends on the
ability of the compiler to schedule integer loads ahead of
other dependent instructions. As shown in Figure fipp;

pp, su2cor turb3dandwavebare the programs that experi-
ence the largest integer load miss stalls.

Regarding the impact of the L2 latency on performance
(see Figure 1-d), although programs such fgpp or
turb3d perceive much load miss latency, they are hardly
performance degraded due to their extremely low miss ra-
tios (see Figure 1-c). The most performance degraded pro-
grams are those with both high perceived miss latency and
significant miss ratioshydro2d wave5andsu2cor

To summarize, performance is little affected by the L2
latency when either it can be hidden efficienttgrocaty
swim mgrid, appluandapsi, or when the miss ratio is low
(foppp and turb3d), but it is seriously degraded for pro-
grams that lack both featuresu2cor, waveandhydro2d.

time schemes (this is the approach that emerging EPIC ar- The hidden miss latency of FP loads depends on the degree

chitectures take [2]).



. -UNIT -
Register Fetch, Dispatch & Rename J_u left,striped: AP
Map right,solid: EP
Tables % \\&\&}* 2
"1 | H Instruction 7
Queues % -ACTIVITY -
2 wrong-path
Reg. | Reg. 'E instr. or idle
Files Hﬂ AP EP Files > wait operand
7Y from FU
v 4 wait operand
| | Store ‘ A / from memory
I Address O other
! Queues Number of threads mm useful work
v i v Figure 3: issue slots breakdown

| Memory Subsystem Early experiments revealed that in a single-threaded ar-

chitecture most of the wasted issue slots are caused by true

AP functional units 4 (latency = 1 cycle) .

EP functional units 4 (latency = 4 cycles) data dependences between EP register operands, due to the

Control speculation at AP 4 unresolved branches restricted ability of the in-order issue model to exploit ILP.

L1 on-chip |-cache 2 ports, infinite Therefore, as far as decoupling hides memory latency and

L1 on-chip data cache 4 ports, lockup-free (16 MSHRs), multithreading supplies enough amounts of parallelism to
64 KB, dir.map., 32 byte/line, write back, 1 cycle Hit th L tall ti tant .

L2 off-chip cache infinite, multibanked, 16 cycle hit r_emove € remaining stalls, we exp_ec |mpor an s_ynergls_-

L1-L2 interface 128-bit wide bus, 16 bytes/cycle. tic effects between these two techniques in a hybrid archi-

Per thread: tecture.

AP physical registers 64 For the experiments in this section, the multithreaded

::;]thuhéiséf]agfgl:s;ers f;entries decoupled architecture parameters are those in Figure 2.

Store Address Queue 32 entries The §|mulator is fed with independent threads. Each thread

BHT 2K entries x 2 bit consists of a sequence of traces from all SpecFP95 pro-

grams, in a different order for each thread.
Figure 2: Scheme and main parameters of

the multithreaded decoupled processor 3.1. Sources of Wasted Issue Slots

of program decoupling, while that of integer loads relies The first column pair in Figure 3 represents the case of
exclusively on the static instruction scheduling. a single thread, showing that the major bottleneck is caused

by the EP functional units latency, as discussed above.

. . When two more contexts are added, multithreading drasti-
3. A Multithreaded Decoupled Architecture cally reduces these stalls in both units, and produces a 2.31

A multithreaded decoupled architecture (Figure 2) sup- sPeed-up (from 2.68 IPC to 6.19 IPC). Since with 3 threads
ports multiple hardware contexts, each executing in a de- the AP functional units are nearly saturated (90.7%), negli-
coupled mode. The fetch and dispatch stages - including 9ible speed-ups are obtained by adding more contexts (6.65
branch prediction and register map tables - and the register |PC is achieved with 4 threads).
files and queues are replicated for each context. The issue  Note that although the AP almost achieves its maximum
|OgiC, functional units and caches are shared by all the thrOUghpUt, the EP functional units are not saturated due to
threads. Up to 8 instructions from different threads can be the load imbalance between the AP and the EP. Therefore,
issued per cycle to 8 general purpose functional units. All the effective peak performance is reduced by 15%, from 8
the threads are allowed to compete for each of the 8 issue t0 6.8 IPC. This problem could be addressed with a differ-
slots each cycle, and priorities among them are round-robin €nt issue width in each processor unit, but this is beyond the
(similar to thefull simultaneous issuscheme reported in ~ Scope of this study.

[9]) Each Cyc|e, On|y two threads have access to the I- Another important remark is that when the number of

cache, and each of them can fetch up to 8 consecutive in- threads is increased, the combined working set is larger,
structions (or up to the first taken branch). The two chosen and the miss ratios increase progressively, putting higher
threads are those with less instructions pending to be dis- demands on the external bus bandwidth. On average, there

patched (similar to the RR-2.8 with I-COUNT schemes, re- are more pending misses, which increases the effective
ported in [8]). load miss latency, and the EP stalls causeavhiting op-
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Figure 4. (a) Perceived latency. (b) Relative IPC loss. (c) Effects of decoupling and multithreading on IPC.

erands from memorfFigure 3). However, in the AP, since Second, multithreading provides some additional laten-
integer loads are much less frequent than fp loads, the ad- cy tolerance improvement, especially in the non-decoupled
ditional parallelism provided by multithreading eliminates  configurations, but it is much lower than that provided by

almost all of this kind of stalls. decoupling.
Some other conclusions can be drawn from Figure 4-c.
3.2. Latency Hiding Effectiveness While multithreading raises the performance curves, de-

coupling makes them flatter. In other words, while the
main effect of multithreading is to provide more parallel-
ism, the major contribution to memory latency tolerance,
which is related to the slope of the curves, comes from de-
coupling, and this is precisely the specific role that decou-
pling plays in this hybrid architecture.

Multithreading and decoupling are two different ap-
proaches to tolerate high memory latencies. We have run
some experiments to quantify the latency tolerance of a
multithreaded decoupled processor for 1 to 4 threads. In ad-
dition, some other experiments are also carried out to re-
veal the contribution of each mechanism to the latency hid-
ing effect. They consist of a set of identical runs on a de-
generated version of our multithreaded architecture where
the instruction queues are disabled (i.e. a non-decoupled  Multithreading is a powerful mechanism that highly im-
multithreaded architecture). proves the processor throughput, but it has a cost: it needs

Figure 4-a shows the average perceived load miss laten- a considerable amount of hardware resources. We have run
cy, when varying L2 latency from 1 to 256 cycles for the 8 some experiments that illustrate how decoupling reduces
configurations (combinations of 1 to 4 threads with/with-  the required number of hardware contexts.
out decoupling). This metric expresses the average number  We have measured the performance of several configu-
of cycles that an instruction that uses a load value cannotis- rations having from 1 to 7 contexts, for a decoupled multi-
sue although there is a free issue slot. It can be seen that de-threaded architecture and a non-decoupled multithreaded
coupling hides almost all memory latency, even when itis architecture (Figure 5, solid lines). While the decoupled
very high, whereas multithreading helps very little. configuration achieves the maximum performance with

Figure 4-b shows the corresponding relative perfor- just 3 or 4 threads, the non-decoupled configuration needs
mance loss (with respect to the 1-cycle L2 latency) of each 6 threads to achieve similar IPC rates.
of the 8 configurations. Notice that this metric compares Multithreading is usually claimed to be able to sustain a
the tolerance of these architectures to memory latency, high processor throughput, even in systems with a high
rather than their absolute performance. Several conclusions memory latency. Since hiding a longer latency may require
can be drawn from these graphs. First, itis shown thatwhen a higher number of contexts and this has a strong negative
the L2 memory latency is increased from 1 to 32 cycles, the impact on the memory performance, the reduction in hard-
decoupled multithreaded architecture experiences perfor- ware context requirements obtained by decoupling may be-
mance drops of less than 4%, while the performance degra- come a key factor when L2 memory latency is high. To il-
dation observed in all non-decoupled configurations is |ustrate this fact, we have run a similar experiment for 1 to
greater than 23%. Even for a huge memory latency of 256 16 contexts and a L2 memory latency of 64 cycles. As
cycles, the performance loss of the decoupled configura- shown in Figure 5 (dotted lines), while the decoupled ar-
tions is lower than 39% while it is greater than 79% for the  chitecture achieves the maximum performance with just 4
non-decoupled configurations. or 5 threads, the non-decoupled architecture cannot reach a

3.3. Reduction in Hardware Contexts
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Figure 5: Decoupling reduces hardware

contexts and avoids external bus saturation

similar performance with any number of threads, because it
would need so many that they would saturate the external

the hardware chip area and complexity, which may com-
promise the clock cycle.

Reducing the number of threads also reduces the cache
conflicts and the required memory bandwidth, which is
usually one of the potential bottlenecks of a multithreaded
architecture. We have shown that if decoupling is disabled,
the external L2 bus bandwidth becomes a bottleneck when
the miss latency is 64 cycles, which prevents the processor
from achieving the maximum performance for any number
of threads.

In summary, we can conclude that decoupling and mul-
tithreading techniques complement each other to exploit
parallelism and to hide memory latency. A multithreaded
decoupled processor obtains its maximum performance
with few threads, has a reduced issue logic complexity, and
itis hardly performance degraded by a wide range of L2 la-
tencies. All of these features make it a promising alterna-

L2 bus: the average bus utilization is 89% for 12 threads,
and 98% for 16 threads. Moreover, note that the decoupled
architecture requires just 3 threads to achieve about the

tive for future increases in clock speed and issue width.

same performance as the non-decoupled architecture with Acknowledgements

12 threads. Thus, decoupling significantly reduces the
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tain level of performance.

To summarize, decoupling and multithreading comple-
ment each other to hide memory latency and increase
throughput with reduced amounts of thread-level parallel- [1]
ism and low issue logic complexity.

4. Summary and Conclusions [2]

In this paper we have analyzed the synergy of multi- 3]
threading and access/execute decoupling. A multithreaded
decoupled architecture takes advantage of the latency hid-
ing effectiveness of decoupling, and the potential of multi- [4)
threading to exploit ILP. We have analyzed the most im-
portant factors that determine its performance and the syn-
ergistic effect of both paradigms. [5]

A multithreaded decoupled architecture hides efficient-
ly the memory latency: the average perceived load miss la-
tency is less than 5 cycles in the worst case (with 4 threads [6]
and a L2 latency of 256 cycles). We have also found that,
for L2 latencies lower than 32 cycles, their impact on the
performance is quite low: less than 4% IPC loss, relative to ;
the 1-cycle latency scenario, and it is quite independent of
the number of threads. On the other hand, this impact is (8]
greater than a 23% IPC loss if decoupling is disabled. This
latter fact points out that decoupling is the main contributor
to memory latency tolerance.

The architecture reaches maximum performance with [g]
very few threads, significantly less than in a non-decoupled
architecture. The number of simultaneously active threads
supported by the architecture has a significant impact on
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