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a b s t r a c t

We present fundamental challenges for scalable and dependable service platforms and architectures that
enable flexible and dynamic provisioning of cloud services. Our findings are incorporated in a toolkit
targeting the cloud service and infrastructure providers. The innovations behind the toolkit are aimed
at optimizing the whole service life cycle, including service construction, deployment, and operation, on
a basis of aspects such as trust, risk, eco-efficiency and cost. Notably, adaptive self-preservation is crucial
to meet predicted and unforeseen changes in resource requirements. By addressing the whole service life
cycle, taking into account several cloud architectures, and by taking a holistic approach to sustainable
service provisioning, the toolkit aims to provide a foundation for a reliable, sustainable, and trustful cloud
computing industry.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Contemporary cloud computing solutions, both research
projects and commercial products, have mainly worked on
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functionalities closer to the infrastructure, such as improved per-
formance for virtualization of computing, storage, and network re-
sources, as well as fundamental issues such as virtual machine
(VM)migrations and server consolidation.When higher-level con-
cerns are considered, existing solutions tend to focus only on func-
tional aspects, whereas quality factors, although very important,
are typically not considered. In order to move from a basic cloud
service infrastructure to a broader cloud service ecosystem, there is
a great need for tools that support higher-level concerns and non-
functional aspects in a comprehensive manner.

In this work we introduce five higher-level challenges that
in our view must be addressed for a wider adoption of cloud
computing:

1. Service life cycle optimization.
2. Dependable sociability = Trust + Risk + Eco + Cost.
3. Adaptive self-preservation.
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4. Multi-cloud architectures.
5. Market and legislative issues.

Notably, these five concerns cover most of the ten key obsta-
cles to growth of cloud computing identified in a recent report [1],
as well as address several open issues [2–4]. When approaching
these concerns, we focus on a holistic approach to cloud service
provisioning and argue that a single abstraction for multiple coex-
isting cloud architectures is imperative for a broader cloud service
ecosystem. Thus, our work is based on the assumptions that clouds
will be available as private and public, that they will be used in
isolation or in a variety of conceptually different combinations,
and that they will be internal or external to individual organiza-
tions or cross-organizational consortia. The outcome of our multi-
disciplinary research within these five challenges are incorporated
in theOPTIMIS Toolkit. We present the design of the toolkit and dis-
cuss how it addresses the higher-level concerns introduced here.

The main stakeholders throughout this work are service
providers and infrastructure providers, although it can be foreseen
that our results can also impact actors such as brokers, and service
consumers (end-users). Henceforth, we consider the following
definitions for these roles:

• Service Providers (SPs) offer economically efficient services using
hardware resources provisioned by infrastructure providers.
The services are directly accessed by end-users or orchestrated
by other SPs.

• Infrastructure Providers (IPs) offer computing, storage, and
network resources required for hosting services. Their goal is to
maximize their profit from tenants by making efficient use of
their infrastructures, possibly by outsourcing partial workloads
to partnering providers.

The element of interaction between SPs and IPs is a service. No-
tably, SPs and IPs have conflicting economical and performance
goals that result in interesting problems in cases where they are
both part of the same organization. It is foreseen that both types
of providers are in need of more feature-rich analysis and man-
agement tools in order to provide economically and ecologically
sustainable services throughout the whole service life cycle.

The outline of the paper is as follows. Sections 2–6 present
details of the five higher-level concerns enumerated above. Sec-
tion 7 presents a high-level view of the OPTIMIS Toolkit, dis-
cusses how the toolkit addresses the five challenges, and illustrates
how it can be used to instantiate various cloud architectures. Ex-
perimental results are described in Section 8. Finally, we share our
concluding remarks in Section 9.

2. Service life cycle optimization

There are three fundamental steps in the service life cycle,
construction of the service, deployment of the service to an IP, and
operation of the service.

2.1. Service construction

In the service construction phase, the SP builds the ser-
vice and sets it up for deployment and operation on the IP.
The activities performed include preparation and configuration
of VM’s images as well as specification of dependences among
service components. Currently, there is no programming model
specifically tailored for clouds. On the one hand developers are
limited to use application-specific platforms [5], restrictive com-
puting paradigms [6,7], or platforms for a single cloudmiddleware
[8]. A commonway of offering these solutions is bywrapping them
as a PaaS environment or by offering proprietary APIs for particu-
lar middlewares limited to single infrastructure providers. On the
other hand, developing high-level services from raw infrastruc-
ture through use of IaaS is a manual and ad-hoc process, hindering
broader cloud adoption as service development becomes expen-
sive and time consuming.

The challenge of service construction resides in designing and
developing easy ways to create complex services [9]. To this end,
applications need to be abstracted from their execution envi-
ronment and the development of new services, including those
composed from adapting and combining legacy-and licensed soft-
ware, must be facilitated. For the latter, novel licensemanagement
technologies are required to significantly extend currently avail-
able solutions for management of license tokens in distributed en-
vironments [10]. The composition of services as a mix of software
developed in-house, existing third-party services, and license-
protected software is a clear contrast to commonly used ap-
proaches for service composition [11].

2.2. Service deployment

In the service deployment phase, the service is placed on an IP
for operation. From the SP point of view, themain objective during
this phase is to select the most suitable IP for hosting a service,
whereas for IPs the main objective is to decide whether accepting
a new service is beneficial for its business goals. The key process
during deployment is the negotiation of SLA terms between
SP and IP. However, this negotiation is performed manually in
current deployment solutions [2] and SPs are limited to use single
providers as differences in contextualization mechanisms [12,13],
necessary for instantiating a service once deployed, hinder multi-
cloud deployment.

Moreover, contemporary cloud SLA mechanisms [14,15] are
typically limited to cost-performance tradeoffs. For example, it is
not possible to automatically evaluate levels of trust and risk, or to
negotiate use of license-protected software. To overcome current
limitations, deployment optimization tools need to support
deployment given a set of policies and allow SPs to specify required
SLA terms for services. The policies governing deployment must
include the degree of trust expected from a provider, the level of
risk with regard to cost thresholds, energy consumption limits,
performance levels, etc.

2.3. Service execution

Service execution is the last phase in the service life cycle and
consists of two different but related procedures, performed by SPs
and IPs. The overall objectives of these stakeholders differ and as a
result there is a conflict of interest in management tasks. On one
hand, the SP performs a set of management operations in order
to meet the high-level Business Level Objectives (BLOs) specified
during service construction. These include, for instance, constant
monitoring of service status and mechanisms for monitoring and
continuous assessment of the risk level of IPs in order to apply
the corresponding corrective actions. On the other hand, an IP
performs autonomic actions to, e.g., consolidate and redistribute
service workloads, replicate and redistribute data sets, and trigger
actions to increase and decrease capacity to adhere to SLAs,
i.e., enact elasticity rules, with the overall goal of achieving the
most efficient use of its infrastructure and hencemaximize its own
objectives, potentially at the expense of the goals of the SPs.

Contemporary tools for service execution optimization focus
on mechanisms for monitoring service status and for triggering
capacity variations to meet elasticity requirements [16]. These
tools tend to use only SLAs and infrastructure status for making
decisions and either neglect business-level parameters such as
risk, trust, reliability, and eco-efficiency, or consider them in
isolation. For instance, eco-efficient policies for the operation of
hosting centers aiming to minimize its power consumption have
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been investigated [17,18]. Similarly, trust mechanisms have been
studied in the context of grid resource selection in order to choose
providers that are likely to provide better service according to
their reputation [19]. In the same way, risk information has been
used for decisionmaking [20]. Finally, some resourcemanagement
proposals for data centers and e-commerce systems are driven by
business objectives or incorporate business level parameters in
their management policies [21–23], though most of them target
revenue as the only objective.

According to this, SPs and IPs require software components that
in addition to the traditional performance indicators also take into
account business-level parameters (e.g., risk, trust, reliability, etc.)
in order to make decisions in a synergistic fashion to contribute to
the overall provider goals. In order to achieve this type of decision
making process, all management activities must be harmonized
through the use of cloud governance processes that integrate
all service requirements, from high-level BLOs to infrastructure
requirements.

3. Dependable sociability = trust + risk + eco + cost

Traditionally, relationships between stakeholders have been fo-
cused on cost-performance trade-offs. However, economical fac-
tors are not enough for an open and highly dynamic environment
inwhich relationships are created in an on–off basiswith a possible
high degree of anonymity between stakeholders. On the one hand,
it is necessary to offer methods and tools to quantitatively assess
and evaluate stakeholders, e.g., through audit andmonitoring func-
tions to analyze the probability of service failure, the risk of data
loss, and other types of SLA violations. On the other hand methods
to measure stakeholder satisfaction such as individual and group
perceptions, reputation [24] of stakeholders regarding ecological
aspects, or previous experiences, must also be considered. Alto-
gether, these mechanisms can be used to confirm the dependabil-
ity and reliability among stakeholders. We now introduce various
quality factors that have traditionally not been considered but that
we believe improve the decision making capabilities of both SPs
and IPs.

3.1. Trust—reputation management

Trust is a multifaceted aspect not only related to risk and
security aspects, but also to perceptions and previous experiences.
Selection of an IP depends on the trust that it will provision the
service correctly and securely. Conversely, knowing a customer’s
reputation enhances the admission control evaluation and reduces
the risk of breaking economical or ecological goals of an IP.

Trust is often calculated by reputation mechanisms [25,26]. A
reputation is a subjective measure of the perception that members
of a social network has of one another. This perception is based
on past experiences. The reputation ranks aggregate experiences of
all members of the social network—in this case the social network
includes all stakeholders, i.e., the combination of SPs and IPs. Tools
to determine the integrity of data disclosed by stakeholders as
well as mechanisms to act accordingly, e.g., to blacklist dishonest
providers, are also necessary.

3.2. Risk assessment

Underpinning a successful cloud infrastructure is delivering the
required QoS levels to its users in a way that minimizes risk, which
is measured in terms of a combination of the likelihood of an
event and its impact on the provision of a functionality. Earlier
work in risk management for distributed systems has mainly fo-
cused on operational aspects such as failures and performance
degradation, and assumed a very IaaS centric view under a spe-
cific resource reservation model [27]. Factors such as trust, se-
curity, energy consumption, and cost have not been traditionally
considered. Moreover, tools for the definition, assessment and
management of risk based on variations in levels of the proposed
factors for both stakeholders and throughout the service life cy-
cle (SPs during service construction, deployment, and operation;
and IPs during admission control and internal operations) are vir-
tually nonexistent. Such risk management mechanisms must also
consider aspects such as energy consumption, the cost of reconfig-
uration and migration, and the reliability and dependability of the
provided services, in order to maintain secure, cost-effective, and
energy-efficient operations.

3.3. Green assessment

Environmental concerns reflected in upcoming legislation have
increased the awareness of the ecological impact of the ICT
industry. As a result, the level of ecological awareness can now
be a deciding factor between competing providers. However,
environmental concerns are not the only reason for the growing
interest in green data centers, rising electricity prices can also
guide the deployment of services to locations in which they are
provisioned in a more efficient way. The consequence is that IPs
must now focus more than ever on energy efficiency aspects.

Cloud computing in itself contributes to reduce power con-
sumption by consolidating workloads from different customers in
a smaller number of physical nodes, turning off unused nodes [28].
The key concern to confront is the tradeoff between performance
and power consumption [29–31], i.e., to minimize power con-
sumption but still accomplish the desired QoS [32]. To address
this tradeoff, energy efficiency must be treated equal as the other
critical parameters, already including service availability, reliabil-
ity, and performance. To this end, a broad set of mechanisms are
required, ranging from tools for logging and assessing the
ecological impact at the service level, theoretical models that char-
acterize the power consumption of services depending on con-
figuration parameters (e.g., clock frequency, resource usage, and
number of threads used), to predicting future energy impact based
on run-time state, historical usage patterns, and estimates of future
demands.

3.4. Cost and economical sustainability

Fulfilling high trust levels between stakeholders, reduced
risk, and eco-efficient provisioning is trivial if cost is not an
issue. Economical aspects are necessary to balance the previous
three goals. Furthermore, cost must be an explicit parameter
throughout the entire service life cycle. Current commercial
providers offer a variety of capabilities under different pricing
schemes, but it is hard to differentiate among the offeringswithout
sufficient knowledge of the repercussions on internal performance,
ecologic, and economic goals. To improve this situation, more
complex economic models are needed. These models must
include features to compare economical repercussions between
alternative configurations. To this end, such models must employ
business related terms that can be translated to service and
infrastructure parameters during development and deployment
of services. During the operation of a service, it is necessary to
optimize economical factors through a combination of runtime
monitoring, analysis of historical usage patterns, and predictions
of future events. The latter helps to anticipate future service
economic trends. All of these actions create an economic policy
framework in which stakeholders can specify the autonomic
behavior expected from the elements under their management
responsibility.

4. Adaptive self-preservation

Service and infrastructure management in clouds is difficult
due to the ever-growing complexity and inherent variability in
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services. Rapid responses to events are necessary to satisfy agreed
SLAs. Accordingly, human administration becomes unfeasible and
building self-managed systems seems to be the only way to
succeed.

Although self-management for cloud infrastructures is a novel
research area, approaches for automated adjustment of resource
allocations for virtualized hosting centers can be applied [33,34].
However, many of these approaches have two main limitations.
First, they typically exhibit a lack of expressiveness in self-
management due to a lack of a holistic view of management.
This results in management actions, e.g., resource allocation,
monitoring, or data placement, that are performed in isolation
and are as such not optimal. Second, existing solutions tend to
use only SLAs and infrastructure status for making decisions,
neglecting business-level parameters such as risk, trust, reliability,
and eco-efficiency, or considering them in isolation, as discussed
in Section 2.3.

To overcome this problem, SPs and IPs require that all man-
agement actions are harmonized by overarching policies that in-
corporate, balance, and synergize aspects of risk assessment, trust
management, eco-efficiency, as well as economic plausibility. The
management actions must be handled by software components
able to monitor and assess their own status and adapt their be-
havior to ever changing conditions. Aspects to consider in this
decision are overall BLOs, infrastructure capabilities, historical us-
age patterns, and predictions of future demands. The result must
be an integrated solution capable of a wide range of autonomic
management tasks [35] including self-configuration, i.e., automatic
configuration of components, self-healing, i.e., automatic discov-
ery and correction of faults, and self-optimization, i.e., automatic
optimization of resource allotments and data placement. Exam-
ple autonomic management tasks include SLA enforcement, re-
covery of service operation upon resource failure, VM placement
optimization (including migration [36]), enactment of elasticity
policies (vertical and horizontal scalability), consolidation of ser-
vices, management of advance reservations, and data replication
for fault tolerance or performance improvements.

5. Multi-cloud architectures

There are at least two fundamentally different architectural
models for cloud service provisioning using multiple external
clouds:

• In a federated cloud, an IP can sub-contract capacity from other
providers as well as offer spare capacity to a federation of
IPs. Parts of a service can be placed on remote providers for
improved elasticity and fault tolerance, but the initial IP is solely
responsible for guaranteeing the agreed upon SLA (with respect
to performance, cost, eco-efficiency, etc.) to the SP.

• In amulti-provider hosting scenario, the SP is responsible for the
multi-cloud provisioning of the services. Thus, the SP contacts
the possible IPs, negotiates terms of use, deploys services,
monitors their operation, and potentially migrates services
(or parts thereof) from misbehaving IPs. IPs are managed
independently and placement on different providers is treated
as multiple instances of deployment.

Each model has benefits and drawbacks. However, to date,
these models have only been studied in isolation [13,16,37], which
essentially creates either–or situations. Instead, for a more flexible
provisioning model, it is important to be able to use multiple
clouds without distinguishing whether a service is hosted within
a single cloud or across multiple providers, i.e., clouds must be
able to be combined into arbitrary, hierarchical architectures. To
this end, it is imperative to create a single abstraction without
regard of architectural style. To accomplish this, there are a
number of challenges that must be solved, including: verification
of SLA adherence; metering, accounting and billing of services
running out of a provider’s boundaries; managing software license
authorizations, particularly when migrating a service to different
providers; replication, synchronization, and backup of data
between providers; evaluation of economical efficiency associated
with using external providers; legal implications regarding data
protection and privacy aspects; and establishing an inter-cloud
security context for governing all interactions between clouds.

6. Market and legislative issues

Clouds bring change to user behavior. The focus of attention
is moving away from how a service is implemented or hosted to
what the service offers, a shift from buying tools that enable a
functionality to contracting third-party services that deliver this
functionality on demand in a pay-per-use model [38]. There is a
massive surge in interest around private and hybrid clouds. With
new application use cases emerging on a regular basis, numerous
commercial on-ramps are seeking to provide access to multiple
clouds, and startups and incumbent providers alike are targeting
cloud service brokerage. These changes in the landscape create
opportunities for new roles, relationships, and value activities.

We believe that the hybrid cloud is where the market is
heading. The appetite among enterprises for a range of execution
environments to serve the needs of different workloads reinforces
that successful cloud strategies will enable the best execution
venue practices supported in hybrid cloud environments. These
allow service providers to choose, via policy automation, different
venues (private, public, federated, etc. clouds) in which to run
workloads, depending on costs, latency, security, locality, eco-
efficiency, or other SLA requirements. In short, we work toward
a cloud market model where providers are fungible, transparent
and compliant, and consumers can easily and efficiently use cloud
functionality to their best advantage.

In addition to the new market opportunities, the emerging
cloud landscape introduces additional concerns related to legal
compliance. It is important to assess from the very beginning those
associated legal risks in cloud computing and create a framework
for minimizing or mitigating those risks, particularly when
presupposing that data moves geographically. In such cases, data
protection and privacy, being issues of cross-border jurisdictional
nature as they concern the acquisition, location, and transfer of
data [39], are important and call for a data protection framework
and security infrastructure [40,41]. Furthermore, legally and non-
legally binding guidelines concerning green IT strategies and
legislative and jurisdictional issues are key to infrastructure and
service providers when it comes to decision making [42,43]. In
addition, intellectual property and contractual issues concerning
ownership and rights in information and services located in the
cloud need to be tailored and taken into account when designing a
cloud computing toolkit [44].

7. The OPTIMIS toolkit

Our response to the challenges presented in the previous
section is a multi-disciplinary research line with inclusion of the
main outcomes in the OPTIMIS Toolkit. The toolkit consists of a
set of fundamental components realizing an anticipating a variety
of architectures for simultaneous use of multiple clouds. Fig. 1
illustrates the high-level components of the toolkit: the Service
Builder (SB), the Basic Toolkit, the Admission Controller (AC), the
Deployment Engine (DE), the Service Optimizer (SO), and the Cloud
Optimizer (CO).

The SB is used during the service construction phase and
enables developed services to be delivered as Software as a
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Fig. 1. High level view of the components in the OPTIMIS toolkit. The basic toolkit addresses quantitative and qualitative analyzes that help in making optimal decisions
regardless of the invoking component. Organizations can act as SPs and/or IPs depending on the components that they chose to adopt (from the admission controller,
deployment engine, service optimizer, and cloud optimizer).
Service (SaaS). A service programmer has access to an integrated
development environment that simplifies both development and
configuration of the service using a novel programming model for
service development. In our programming model, a service is a
collection of core elements, that include services built from source
code, existing services, licensed software, and legacy-software not
developed specifically for clouds, as well as a set of dependences
between these core elements. During operation of the service, the
core elements are orchestrated by a runtime environment that
analyzes the dependences defined during service construction.

Each core element has a set of functional and non-functional
requirements associated, e.g., requested performance, amount of
physical memory and CPU characteristics, response time, elasticity
aspects, service and security level policies, ecological profile, etc. In
addition, there are also requirements among the core elements and
between the service and its potential users. Once the core elements
are implemented, these are packed by the SB along with any
external software components into VM images. The configuration
of theseVM images are then encoded in a servicemanifest based on
the Open Virtualization Format (OVF) [45] with a set of extensions
to specify the functional and non-functional requirements of the
service. This servicemanifest is the input to the service deployment
phase, and the completion of the manifest marks the end of the
service construction phase.

The Basic Toolkit provides functionalities common to compo-
nents that are used during service deployment and execution.
Some of the functionalities address the quantitative and qualita-
tive requirements that we in Section 3 discuss under the term
Dependable Sociability. Monitoring and security are functionali-
ties that must be considered during several stages of the service
life cycle. The Basic Toolkit provide general purpose functionali-
ties that evaluate similar aspects of management. However, com-
ponent behavior is customized depending on the invokingmodule.
This customization is fulfilled through the use of internal policies
that adapt the decision making processes, e.g., based on the invok-
ing component and the current stage of the service life cycle.

For example, to create a comprehensive trustworthy system,
the toolkit considers all relationships of the types SP–IP and IP–IP.
Trust estimations are determined from the trust rank of the SP
(or IP) in other members of its own social network according
to a transitive trust chain. The reputation mechanism delivers
trust measurements at two levels: for IPs, trust reflects their
performance and the ability to accomplish promised levels of
service, whereas for SPs, trust measurements are relevant for
establishing successful business networks. For IPs, the trust tools
include methods to identify SPs in long term relationships and
to analyze SPs’ historical behavior that can help to improve
management operations by e.g., predicting future capacity.

We now illustrate how the OPTIMIS Toolkit is used during
deployment of services. The first scenario is a simplified one
where an IP delivers capacity to a SP as shown in Fig. 2.
More complex scenarios can also be realized as described later
in the section. Service deployment starts from where service
construction ends, with a service manifest that describes the VM
images and associated requirements for service configuration.
Fig. 2. Service deployment scenario that illustrates the interaction between the
high-level components of the SP and IP.

During service deployment the SP finds, by use of the DE, the best
possible conditions for operation of the service, negotiates terms
of deployment, and launches the service in the IP. The DE send the
service manifest (SLA template) to the IP to receive deployment
offers (Step 1 in Fig. 2).

An IP receiving a deployment request performs a probabilistic
admission control to decide whether to admit the new service
or not (Step 2). This test balances revenue maximization lead by
business goals against penalties formisbehavior, i.e., frombreaking
SLAs of currently provisioned services. Example policies include
over-provisioning (overbooking for revenue optimization) as well
as under-provisioning (reserving capacity to minimize the risk of
failures). The test is carried out by the Admission Controller (AC)
componentwith help of use of the Basic Toolkit (Step 3). An integral
part of the admission control test is workload analysis of the
current infrastructure and the new service, to be performed in
combination with capacity planning.

Using the Basic Toolkit, the DE evaluates the IP’s offers to run
the service in order to chose the most suitable one (Step 4). This
analysis is carried out considering both qualitative and quanti-
tative factors discussed in Section 3. After selecting a deploy-
ment offer, the DE prepares the service images for deployment.
In this step, information required for the VMs to be able to self-
contextualize once they boot is embedded in ISO images that are
bundled together with the VM images.

In the IP, the process of accepting a new service starts
by allocating space for the VMs and determining their initial
placement. The latter is a complicated process as placement must
consider the (predicted) elasticity of the service and the non-
functional constraints specified in the deployment manifest. Some
of these constraints can even have legal ramifications regarding
e.g., data protection and privacy or environmental guidelines as
discussed in Section 6. Allocation of resources for the service is
performed by the CO with help of components for management of
VMs and data that both make extensive use of the functionalities
in the Basic Toolkit (Step 5). Once resources are allocated by the CO
with help of these managers, the VM images are booted and self-
contextualizedwith help of previously the scripts installed (Step 6).
The SO in the SP is notified once the deployment process completes
(Step 7).

The SO and CO also perform repeated management decisions
during service operation, the SO on behalf of the SP and the CO for
the IP. The SO continuously checks that the IP provisions the service
according to the agreed SLAs, otherwise the SO can migrate the
service to a different IP. On the other hand, the COoptimizes the IP’s
infrastructure resources. This includes, for instance, monitoring
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Fig. 3. Federated cloud architecture where the SP establishes a contract with IP A
that is a member of the federation that includes IP B. The service is delivered using
resources of either IP, or from both.

of infrastructure status, recovery from failures (e.g., by using
checkpoints), andmechanisms for optimizing power consumption
(e.g., by consolidating and migrating VMs). A complicating factor
in this infrastructure optimization is that the CO also dynamically
increases and decreases the number of VMs for a service
(i.e., performing elasticitymanagement) to protect SLAswith SPs to
avoid penalties and preserve reputation. The SO andCOboth utilize
the Basic Toolkit as the basis for their quantitative and qualitative
analysis.

7.1. Flexible multi-cloud architectures

The combination of the five main components of the OPTIMIS
Toolkit and their implementation by SPs and IPs, gives rise to a
number of plausible multi-cloud scenarios where resources from
more than one IP can be combined in novel ways. Some example
compositions follow.

Federated architecture
In this scenario (Fig. 3), several IPs (A and B) use the OPTIMIS

Toolkit to establish a cooperation inwhich any IP can lease capacity
from the other. The cooperation is carried out according to internal
IP business policies. The SP is unaware of this federation as its
contract is with a single IP (in this case IP A). However, the SP
can indirectly pose constraints on which IPs in the federation
that can be used through non-functional requirements such as
affinity of service components or juridical restrictions to prevent
VM migration across country borders (data protection areas). In
the federated scenario, the contracted provider (IP A) is fully
responsible toward the SP even in the case of subcontracting of
resources from the federation.

Multi-cloud architecture
In this scenario (Fig. 4), the SP is responsible for the multi-

cloud aspect of service operation. If IP A does not fulfill the agreed
objectives, the SP can cancel the contract and move the service
to a different IP (IP B). Notably, the SP is responsible both for
negotiating with each IP and for monitoring the IPs during service
operation. In more complex variations of this scenario, parts of
the service can be hosted on multiple providers. By using APIs
and adapters externally to the OPTIMIS components, the toolkit
can also achieve interoperability with non-OPTIMIS providers
(IP C in Fig. 4). However, in such cases, the SP has to resort to
less feature-rich management capabilities, and the risk levels for
service provisioning increase accordingly.

Aggregation of resources by a third party broker
This scenario, illustrated in Fig. 5, introduces a new stakeholder,

the broker, which aggregates resources from multiple IPs and
offers these to SPs. The broker thus acts as a SP to IPs and as an
IP to SPs. Given the conflicting goals of these respective providers,
there are many interesting concerns regarding the independence,
honesty, and integrity of the broker. Benefits with this model
for SPs include simplicity and potential cost reductions, as the
broker can provide a single entry point to multiple IPs and may
obtain better prices due to bulk discounts from IPs. Management is
simplified for an IP that offers capacity to a broker as the number of
customers is decreased. Accordingly, trust and risk become easier
to predict as the IP is likely to have fewer and longer term contracts
Fig. 4. Multi-cloud architecture in which the SP terminates the contract with IP A
and re-deploys the service to IP B. The SP can also use infrastructure from an
IP (C) that does not implement the OPTIMIS Toolkit. In this case the SP uses an
interoperability layer that is external to the OPTIMIS components.

Fig. 5. In the brokering architecture, a third party broker aggregates resources from
several IPs (A and B) and offer these resources to SPs.

Fig. 6. Hybrid cloud architecture. An organization moves part of its operation
to external providers (the federation formed by IPs A and B, as well as C). The
organization can also sell capacity to the SP during periods of low load.

with brokers, instead of a multitude of short interactions with
potentially unknown SPs.

Hybrid cloud architecture
In this scenario (Fig. 6), any organization that operates a

private cloud is able to externalize workloads to public IPs. This
is accomplished bymonitoring the normal operation of the private
cloud, through the CO component, and using capacity from public
clouds (IPs A, B, and C, the former two in federation) when the local
infrastructure is insufficient. The implementation of this scenario is
significantly simplified once an organization is using the OPTIMIS
Toolkit for managing its private cloud. Furthermore, this scenario
can be extended if the organization makes use of the AC. In this
case, the organization is able to offer capacity from its private
cloud to others (SP A) when that capacity is not needed for internal
operations.

8. Evaluation

This section describes experimental evaluations of selected
parts of the OPTIMIS Toolkit, namely how cost and risk can be
included in elasticity policies and how to evaluate cloud providers
through risk assessment.
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Table 1
Comparison of elasticity policies.

Policy Failed Cost Failed (%) Cost (%)

UR-DR −17 829 349 648 −0.11 2.2
UR-DPC1 −54 296 196 790 −0.34 1.24
UR-DPC2 −5 813 566 795 −0.037 3.6

8.1. Elasticity policies for cost-risk tradeoffs

The key aspect for elasticity is to allocate and deallocate the
right number of VMs to a service, and at the right time. Over-
provisioning, i.e., allocating too many VMs, reduces the risk for
(availability) SLA violations, but increases costs as some VMs are
not needed. Conversely, allocating too few VMs reduces costs but
increases the risk for failing to provision the service in accordance
with the SLA. An ideal elasticity policy should be able to proactively
and accurately estimate the future service load and thus be able
to reduce the SLA violation rate, with a minimal amount of over-
provisioning. For elasticity, we define a risk asset to the number
of service requests the IP failed to provision proactively. We define
the cost to be the number of VMs over-provisioned at any time unit
i.e., resources allocated but not used.

An elasticity policy defines two decision points, one for when
and how much to scale up and another one for scale down.
We here study three different elasticity policies, all based on
closed loop control systems. The first and simplest policy scales
up and down reactively and is henceforth denoted UR-DR. The
second policy, denoted UR-DPC1, scales up reactively, but scales
down using a proactive controller, where the gain parameter is
based on the periodical change of the system load. Similarly, the
UR-DPC2 policy combines reactive scale up with proactive scale
down, where the gain parameter is the ratio between the load
change and the average system service rate over time. A more in-
depth discussion of control approaches to elasticity is found in our
previous work [46].

We evaluate the three elasticity policies using a 17 days and
19 h subset of the web server traces from Wikipedia [47]. In this
evaluation we assume that each VM can service 100 requests
simultaneously and that load balancing is perfect. The number of
VMs suggested by the elasticity policy is thus a fraction of the
number of requests anticipated for the Wikipedia site. A summary
of the experiments is shown in Table 1. In this table, the Failed
column shows the number of VMs needed (but not allocated) to
serve all requests, i.e., the degree of under-provisioning. The Cost
column shows the number of VMs allocated but not used, i.e., the
amount of over-provisioning. In the two right-most columns these
two metrics are given as percentages of the total number of VMs.

Fig. 7 shows each service request (marked ‘+’) in Wikipedia
workload and the allocated capacity (marked ‘×’), i.e., number of
VMs multiplied by 100. Fig. 7(a), (c) and (e), show the complete 17
days 19 h trace, whereas Fig. 7(b), (d), and (f) detail the number
of service requests and allocated VMs for a period of 17 min. As
shown in Table 1 and illustrated in Fig. 7, the three policies result
in different risk levels associatedwith different costs. TheUR−DC1
policy provides the lowest cost combinedwith the highest risk. The
UR-DR policy results in amedium risk level coupledwith amedium
cost, whereas UR-DPC2 provides the lowest risk but at the highest
cost. The general trend observable here is that when doubling
the over-provisioning from 1.24% to 2.2% the risk is lowered to
one third, and when further increasing over-provisioning to 3.6%,
risk is cut to around a tenth. We remark that for the Wikipedia
traces, both risk and cost are very low, with less than 0.4% under-
provisioning and less than 4% resources over-provisioned by any
policy. The good results are due to this workload being rather
smooth and regular with the exception of a sharp peak at around
600,000 s.
To further understand how risk and cost varywith theworkload
size, we performed a second set of experiments where the number
of service requests varies. In this experiment, we multiply the
number of requests per time unit in the Wikipedia traces by a
factor from 1 to 10 and by 20, 30, and 40. Figs. 8 and 9 illustrate
how the risk and cost, both defined as in the previous experiment,
change with the workload size. The UR-DR and UR-DPC1 policies
show similar behavior, namely that when the workload size
increases, the risk (under-provisioning) increases up to around
0.8% whereas the cost (over-provisioning) decreases to around 1%.
On the contrary, the UR-DPC2 shows a stable behavior, with risk
around 0.04% and cost just above 3.5% for all workload sizes. These
results suggest that the UR-DPC2 elasticity policy is more robust
and should beused for serviceswith unknownworkloads forwhich
low-risk provisioning is desired.

8.2. SP and IP evaluation through risk assessment

TheOPTIMIS risk assessor provides the functionality to evaluate
providers (SP/IP) based on a number of criteria. These evaluations
are core parts in provider decision making, e.g., for service
deployment and admission control. The SP uses the following
criteria:
• Past performance: Record with respect to SLA acceptance and

violation rate in past SLAs.
• Maintenance: Based on the IP’s policy for maintaining their

infrastructure.
• Infrastructure: Based on available resources, fault-tolerant

mechanisms available, use of redundant network, etc.
• Security: Based on the IP’s security policy regarding access to

resources.
• Customer support: The IP’s policy with regards to customer

support, e.g. do they have a 24/7 contact number?
On the other hand, the IP uses the following criteria for

assessing an SP:
• Past performance: Record with respect to SLA acceptance and

violation rate in past SLAs.
• Legal: Based on the SP’s policy for supporting legal aspects.
• Security: Based on the SP’s security policy regarding the use of

resources.
A value between 0 and 1 is computed for each of the criterion

by evaluating a provider with respect to a number of sub-criteria.
These values are used as the basis for the evaluation. There are
two important features of the evaluation system. First, it takes
into account provider preferences. Different providers are likely
to value the criteria differently. Therefore providers are able to
specify the importance of each of the criteria on a scale of 0 to
10. These are then translated into criteria weights that encapsulate
the amount of influence a particular criterion should have and
incorporated into the provider evaluation. Second, it is able to
handle missing data. Some providers may be unwilling to share
all of the information necessary to compute the criteria values.
Alternatively, data may have been corrupted.

The assessment is achieved through an implementation of
Dempster–Shafer Analytical Hierarchy Process (DS-AHP), whereby
each decision alternative (in this case each provider) is mapped
onto a belief and plausibility interval [48].

Consider a set of providers as corresponding to the proposition
that the providers in that set are preferable to all other
providers considered in the evaluation but not to each other.
The end-user preference weights, wi, are computed for each
criterion, i = 1 . . .N . Pair-wise comparison of decision alternatives
(for providers) are used to derive weights for the criteria, r (i)

j for
the ith criterion and jth provider. A weight or Basic Probability
Assignment (BPA) is computed for each provider as:

mj =

−
i

wir
(i)
j .
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(a) UR-DR performance over 7 days and 19 h. (b) UR-DR: zooming on a period of 17 min.
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Fig. 7. Performance of elasticity policies.
If data ismissing r (i)
j values cannot be computed. Instead of pair-

wise comparison, for any given criterion, each decision alternative
(provider) is evaluated relative to the frame of discernment (the
entire decision space). Providers which are indistinguishable with
respect to a criterion are grouped together as a single proposition
(that the providers in this group are the best alternative). This
results in the BPAs in the form mi(s) where s is a set of one or
more providers. Criteria BPAs are combined using Dempster’s rule
of combination:

(m1 ⊕ m2)(y) =

∑
s1∩s2=y

m1(s1)m2(s2)

1 −
∑

s1∩s2=∅

m1(s1)m2(s2)
,

where ∅ is the empty set.
Belief in the proposition A is defined as the exact belief that
either A or some subset of A is true:

Bel(A) =

−
B⊆A

m(B). (1)

Here,m(B) is a basic probability assignment for the proposition
B [48]. The plausibility of proposition A is a measure of the extent
to which we do not disbelieve proposition A and is defined as:

Pls(A) =

−
A∩B≠∅

m(B). (2)

These form an interval, [Bel(A), Pls(A)] with respect to
proposition A. These intervals, for each proposition corresponding
to a single provider, are used to compute the order of preference for
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Fig. 8. Effect on risk of varying workload sizes and elasticity policies.

Fig. 9. Effect on cost of varying workload sizes and elasticity policies.
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Fig. 10. SP-DS-AHP assessment of three IPs.

the providers. A preference value for provider A relative to provider
B is computed as:

P(A > B)

=
max[0, Pls(A) − Bel(B)] − max[0, Bel(A) − Pls(B)]

[Pls(A) − Bel(A)] + [Pls(B) − Bel(B)]
. (3)

If P(A > B) > 0.5 then provider A is preferred. Comparison
with simulated data is used in order to obtain a provider ranking
between 0 and 1, where 1 corresponds to better than all providers,
0 corresponds to worse than all providers, and 0.5 is average.

Preference values are derived to directly compare the providers.
Fig. 10 shows SP’s assessment with rating results 0.66, 0.33, and 1
for providers IP1, IP2, and IP3 respectively. Provider 3 is regarded as
preferable to both IP1 and IP2 with certainty since belief in IP3 as
the best choice is greater than the plausibility of either IP1 or IP2.
Hence the computed ranking is IP3, IP1, and IP2. Fig. 11 shows IP’s
assessment with rating results 0.33, 1, and 0.66 for providers SPA,
DS-AHP-IP Evaluation
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Fig. 11. IP-DS-AHP assessment of three SPs.

SPB, and SPC respectively, which leads to the final ranking: SPB, SPC ,
SPA. More details on DS-AHP are found in [48].

9. Concluding remarks

We present five fundamental challenges for wide adoption
of cloud computing: service life cycle optimization, dependable
sociability, adaptive self-preservation, multi-cloud architectures,
andmarket and legislative issues.We believe that addressing these
concerns as a whole is key to boost the delivery of advanced
services. Our approach is two-fold, we perform fundamental
research in a wide range of areas spanning from VM management
and programming languages to business models and IT law to
address these challenges, and we incorporate our findings in the
development of the OPTIMIS Toolkit.

The focus of the toolkit is on cloud service and infrastructure
optimization throughout the service life cycle: construction, de-
ployment, and operation of services. All management actions in
the toolkit are harmonized by overarching policies that consider
trust and risk assessment to comply with economical and ecolog-
ical objectives without compromising operational efficiencies. As-
sessing risk of economical and ecological parameters is a unique,
albeit challenging, goal. Governance processes and policies are de-
fined to harmonize management activities throughout the service
life cycle.

The purpose of self-service tools is to enable developers to
enhance services with non-functional requirements regarding
allocation of data and VMs, as well as aspects related to elasticity,
energy consumption, risk, cost, and trust. The OPTIMIS Toolkit
incorporates risk aspects in all phases of the service life cycle
and uses trust assessment tools to improve decision making in
the matching of SPs and IPs. The ecological impact of service
provisioning is integrated in all relevant decision making. The
toolkit also ensures that the desired levels of risk, trust, or eco-
efficiency are balanced against cost, to avoid solutions that are
unacceptable from an economical perspective. The OPTIMIS tools
are aimed to enable SPs and IPs to perform monitoring and
automated management of services and infrastructures, so as to
compare different alternative configurations in terms of business
efficiency. Notably, mechanisms required to design policies
that fulfill legislative and regulatory constraints are also taken
incorporated in the toolkit, e.g., to address adoption challenges
from regulatory and standards compliance requirements such as
privacy and data protection.

Our goal is also to enable and simplify the creation of a
variety of provisioning models for cloud computing, including
cloud bursting, multi-cloud provisioning, and federation of clouds.
Provisioning on multi-clouds architectures and federated cloud
providers facilitates novel and complex composition of clouds that
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considerably extend the limited support for utilizing resources
from multiple providers in a transparent, interoperable, and
architecture independent fashion.
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