
Is our Ground-Truth for Tra�c Classi�cation

Reliable?
?

Valentín Carela-Español1, Tomasz Bujlow2, and Pere Barlet-Ros1

1 UPC BarcelonaTech, Spain
{vcarela, pbarlet}@ac.upc.edu
2 Aalborg University, Denmark

tbu@es.aau.dk

Abstract. The validation of the di�erent proposals in the tra�c classi-
�cation literature is a controversial issue. Usually, these works base their
results on a ground-truth built from private datasets and labeled by tech-
niques of unknown reliability. This makes the validation and comparison
with other solutions an extremely di�cult task. This paper aims to be
a �rst step towards addressing the validation and trustworthiness prob-
lem of network tra�c classi�ers. We perform a comparison between 6
well-known DPI-based techniques, which are frequently used in the lit-
erature for ground-truth generation. In order to evaluate these tools we
have carefully built a labeled dataset of more than 500 000 �ows, which
contains tra�c from popular applications. Our results present PACE, a
commercial tool, as the most reliable solution for ground-truth genera-
tion. However, among the open-source tools available, NDPI and espe-
cially Libprotoident, also achieve very high precision, while other, more
frequently used tools (e.g., L7-�lter) are not reliable enough and should
not be used for ground-truth generation in their current form.

1 Introduction and Related Work

During the last decade, tra�c classi�cation has considerably increased its rel-
evance, becoming a key aspect for many network related tasks. The explosion
of new applications and techniques to avoid detection (e.g., encryption, proto-
col obfuscation) have substantially increased the di�culty of tra�c classi�cation.
The research community have thrown itself into this problem by proposing many
di�erent solutions. However, this problem is still far from being solved [1].

Most tra�c classi�cation solutions proposed in the literature report very high
accuracy. However, these solutions mostly base their results on a private ground-
truth (i.e., dataset), usually labeled by techniques of unknown reliability (e.g.,
ports-based or DPI-based techniques [2�5]). That makes it very di�cult to com-
pare and validate the di�erent proposals. The use of private datasets is derived

? This research was funded by the Spanish Ministry of Economy and Competitiveness
under contract TEC2011-27474 (NOMADS project), by the Comissionat per a Uni-
versitats i Recerca del DIUE de la Generalitat de Catalunya (ref. 2009SGR-1140)
and by the European Regional Development Fund (ERDF).



Table 1. DPI-based techniques evaluated
Name Version Applications

PACE 1.41 (June 2012) 1000
OpenDPI 1.3.0 (June 2011) 100
NDPI rev. 6391 (March 2013) 170
L7-�lter 2009.05.28 (May 2009) 110

Libprotoident 2.0.6 (Nov 2012) 250
NBAR 15.2(4)M2 (Nov 2012) 85

from the lack of publicly available datasets with payload. Mainly because of pri-
vacy issues, researchers and practitioners are not allowed to share their datasets
with the research community. To the best of our knowledge, just one work has
tackled this problem. Gringoli et al. in [6] published anonymized traces without
payload, but accurately labeled using GT. This dataset is very interesting to
evaluate Machine Learning-based classi�ers, but the lack of payload makes it
unsuitable for DPI-based evaluation.

Another crucial problem is the reliability of the techniques used to set the
ground-truth. Most papers show that researchers usually obtain their ground-
truth through port-based or DPI-based techniques [2�5]. The poor reliability of
port-based techniques is already well known, given the use of dynamic ports or
well-known ports of other applications [7, 8]. Although the reliability of DPI-
based techniques is still unknown, according to conventional wisdom they are,
in principle, one of the most accurate techniques.

Some previous works evaluated the accuracy of DPI-based techniques [3, 5,
9, 10]. These studies rely on a ground-truth generated by another DPI-based
tool [5], port-based technique [3] or a methodology of unknown reliability [9,10],
making their comparison very di�cult. Recently, a concomitant study to ours [10]
compared the performance of four DPI-based techniques (i.e., L7-�lter, Tstat,
NDPI and Libprotoident). This parallel study con�rms some of the �ndings
of our work presenting NDPI and Libprotoident as the most accurate open-
source DPI-based techniques. In [11] the reliability of L7-�lter and a port-based
technique was compared using a dataset obtained by GT [6] showing that both
techniques present severe problems to accurately classify the tra�c.

This paper presents two main contributions. First, we publish a reliable la-
beled dataset with full packet payloads [12]. The dataset has been arti�cially
built in order to allow us its publication. However, we have manually simulated
di�erent behaviours to make it as representative as possible. We used VBS [13]
to guarantee the reliability of the labeling process. This tool can label the �ows
with the name of the process that created them. This allowed us to carefully
create a reliable ground-truth that can be used as a reference benchmark for the
research community. Second, using this dataset, we evaluated the performance
and compared the results of 6 well-known DPI-based techniques, presented in
Table 1, which are widely used for the ground-truth generation in the tra�c
classi�cation literature.

These contributions pretend to be a �rst step towards the impartial validation
of network tra�c classi�ers. They also provide to the research community some
insights about the reliability of di�erent DPI-based techniques commonly used
in the literature for ground-truth generation.



2 Methodology

The Testbed. Our testbed is based on VMWare virtual machines (VM). We
installed three VM for our data generating stations and we equipped them with
Windows 7 (W7), Windows XP (XP), and Ubuntu 12.04 (LX). Additionally,
we installed a server VM for data storage. To collect and accurately label the
�ows, we adapted Volunteer-Based System (VBS) developed at Aalborg Univer-
sity [13]. The task of VBS is to collect information about Internet tra�c �ows
(i.e., start time of the �ow, number of packets contained by the �ow, local and
remote IP addresses, local and remote ports, transport layer protocol) together
with detailed information about each packet (i.e., direction, size, TCP �ags,
and relative timestamp to the previous packet in the �ow). For each �ow, the
system also collects the process name associated with that �ow. The process
name is obtained from the system sockets. This way, we can ensure the appli-
cation associated to a particular tra�c. Additionally, the system collects some
information about the HTTP content type (e.g., text/html, video/x-�v). The
captured information is transmitted to the VBS server, which stores the data in
a MySQL database. The design of VBS was initially described in [13]. On every
data generating VM, we installed a modi�ed version of VBS. The source code of
the modi�ed version was published in [14] under a GPL license. The modi�ed
version of the VBS client captures full Ethernet frames for each packet, extracts
HTTP URL and Referer �elds. We added a module called pcapBuilder, which
is responsible for dumping the packets from the database to PCAP �les. At the
same time, INFO �les are generated to provide detailed information about each
�ow, which allows us to assign each packet from the PCAP �le to an individual
�ow. We also added a module called logAnalyzer, which is responsible for ana-
lyzing the logs generated by the di�erent DPI tools, and assigning the results of
the classi�cation to the �ows stored in the database.

Selection of the Data. The process of building a representative dataset, which
characterizes a typical user behavior, is a challenging task, crucial on testing and
comparing di�erent tra�c classi�ers. Therefore, to ensure the proper diversity
and amount of the included data, we decided to combine the data on a multidi-
mensional level. Based on w3schools statistics, we selected Windows 7 (55.3%
of all users), Windows XP (19.9%), and Linux (4.8%) - state for January 2013.
Apple computers (9.3% of overall tra�c) and mobile devices (2.2%) were left
as future work. The selected applications are shown below.

� Web browsers: based on w3schools statistics: Chrome and Firefox (W7, XP,
LX), Internet Explorer (W7, XP).

� BitTorrent clients: based on CNET ranking: uTorrent and Bittorrent (W7,
XP), Frostwire and Vuze (W7, XP, LX)

� eDonkey clients: based on CNET ranking: eMule (W7, XP), aMule (LX)
� FTP clients: based on CNET ranking: FileZilla (W7, XP, LX), SmartFTP
Client (W7, XP), CuteFTP (W7, XP), WinSCP (W7, XP)

� Remote Desktop servers: built-in (W7, XP), xrdp (LX)



� SSH servers: sshd (LX)
� Background tra�c: DNS and NTP (W7, XP, LX), NETBIOS (W7, XP)

The list of visited websites was based on the top 500 websites according to
Alexa statistics. We chose several of them taking into account their rank and
the nature of the website (e.g., search engines, social medias, national portals,
video websites) to assure the variety of produced tra�c. These websites include:
Google, Facebook, YouTube, Yahoo!, Wikipedia, Java, and Justin.tv. For most
websites we performed several random clicks to linked external websites, which
should better characterize the real behavior of the real users and include also
other websites not included in the top 500 ranking. This also concerns search
engines, from which we manually generated random clicks to the destination
web sites. Each of the chosen websites was processed by each browser. In case
it was required to log into the website, we created fake accounts. In order to
make the dataset as representative as possible we have simulated di�erent hu-
man behaviors when using these websites. For instance, on Facebook, we log
in, interact with friends (e.g., chat, send messages, write in their walls), upload
pictures, create events or play games. On YouTube, we watched the 10 most
popular videos, which we randomly paused, resumed, and rewound backward
and forward. Also, we randomly made some comments and clicked Like or Not
like buttons. The detailed description of actions performed with the services is
listed in our technical report [15]. We tested the P2P (BitTorrent and eDonkey)
clients by downloading �les of di�erent sizes and then leaving the �les to be
seeded for some time, in order to obtain enough of tra�c in both directions. We
tried to test every FTP client using both the active transfer mode (PORT) and
passive transfer mode (PASV), if the client supports such mode.

Extracting the Data for Processing. Each DPI tool can have di�erent re-
quirements and features, so the extracting tool must handle all these issues. The
PCAP �les provided to PACE, OpenDPI, L7-�lter, NDPI, and Libprotoident are
accompanied by INFO �les, which contain the information about the start and
end of each �ow, together with the �ow identi�er. Because of that, the software,
which uses the DPI libraries, can create and terminate the �ows appropriately,
as well as to provide the classi�cation results together with the �ow identi�er.
Preparing the data for NBAR classi�cation is more complicated. There are no
separate INFO �les describing the �ows, since the classi�cation is made directly
on the router. We needed to extract the packets in a way that allows the router
to process and correctly group them into �ows. We achieved that by changing
both the source and destination MAC addresses during the extraction process.
The destination MAC address of every packet must match up with the MAC
address of the interface of the router, because the router cannot process any
packet which is not directed to its interface on the MAC layer. The source MAC
address was set up to contain the identi�er of the �ow to which it belongs, so the
�ows were recognized by the router according to our demands. To the best of our
knowledge, this is the �rst work to present a scienti�c performance evaluation
of NBAR.



Table 2. Application classes in the dataset
Application No. of �ows No. of Megabytes

Edonkey 176581 2823.88
BitTorrent 62845 2621.37

FTP 876 3089.06
DNS 6600 1.74
NTP 27786 4.03
RDP 132907 13218.47

NETBIOS 9445 5.17
SSH 26219 91.80

Browser HTTP 46669 5757.32
Browser RTMP 427 5907.15
Unclassi�ed 771667 3026.57

The Classi�cation Process. We designed a tool, called dpi_benchmark, which
can read the PCAP �les and provide the packets one-by-one to PACE, OpenDPI,
L7-�lter, NDPI and Libprotoident. All the �ows are started and terminated
based on the information from the INFO �les. After the last packet of the �ow is
sent to the classi�er, the tool obtains the classi�cation label associated with that
�ow. The labels are written to the log �les together with the �ow identi�er, which
makes us later able to relate the classi�cation results to the original �ows in the
database. A brief description of the DPI-tools used in this study is presented
in Table 1. Although some of the evaluated tools have multiple con�guration
parameters, we have used in our evaluation the default con�guration for most of
them. A detailed description of the evaluated DPI-tools and their con�gurations
can be found in [15].

Classi�cation by NBAR required us to set up a full working environment.
We used GNS3 - a graphical framework, which uses Dynamips to emulate our
Cisco hardware. We emulated the 7200 platform, since only for this platform
supported by GNS3 was available the newest version of Cisco IOS (version 15),
which contains Flexible NetFlow. The router was con�gured by us to use Flexible
NetFlow with NBAR on the created interface. Flexible NetFlow was set up to
create the �ows taking into account the same parameters as are used to create
the �ow by VBS. On the computer, we used tcpreplay to replay the PCAP �les
to the router with the maximal speed, which did not cause packet loss. At the
same time, we used nfacctd, which is a part of PMACCT tools, to capture the
Flexible NetFlow records sent by the router to the computer. The records, which
contain the �ow identi�er (encoded as source MAC address) and the name of
the application recognized by NBAR, were saved into text log �les. This process
is broadly elaborated in our technical report [15].

The Dataset. Our dataset contains 1 262 022 �ows captured during 66 days,
between February 25, 2013 and May 1, 2013, which account for 35.69GB of pure
packet data. The application name tag was present for 520 993 �ows (41.28% of
all the �ows), which account for 32.33GB (90.59%) of the data volume. Addition-
ally, 14 445 �ows (1.14% of all the �ows), accounting for 0.28GB (0.78%) of data
volume, could be identi�ed based on the HTTP content-type �eld extracted from
the packets. Therefore, we were able to successfully establish the ground truth
for 535 438 �ows (42.43% of all the �ows), accounting for 32.61GB (91.37%)
of data volume. The remaining �ows are unlabeled due to their short lifetime



(below ∼1 s), which made VBS incapable to reliably establish the corresponding
sockets. Only these successfully classi�ed �ows will be taken into account dur-
ing the evaluation of the classi�ers. However, all the �ows are included in the
publicly available traces. This ensures data integrity and the proper work of the
classi�ers, which may rely on coexistence of di�erent �ows. We isolated several
application classes based on the information stored in the database (e.g., appli-
cation labels, HTTP content-type �eld). The classes together with the number
of �ows and the data volume are shown in Table 2. We have published this la-
beled dataset with full packet payloads in [12]. Therefore, it can be used by the
research community as a reference benchmark for the validation and comparison
of network tra�c classi�ers.

3 Performance Comparison

This section provides a detailed insight into the classi�cation results of di�erent
types of tra�c by each of the classi�ers. All these results are summarized in
Table 3, where the ratio of correctly classi�ed �ows (i.e., precision or true posi-
tives), incorrectly classi�ed �ows (i.e., errors or false positives) and unclassi�ed
�ows (i.e., unknowns) are respectively presented. The complete confusion matrix
can be found in our technical report [15].

Regarding the classi�cation of P2P tra�c, Edonkey is the �rst application
studied. Only PACE, and especially Libprotoident, can properly classify it (pre-
cision over 94%). NDPI and OpenDPI (that use the same pattern), as well as
NBAR, can classify almost no Edonkey tra�c (precision below 1%). L7-�lter
classi�es 1/3 of the �ows, but it also produces many false positives by classifying
more than 13% of the �ows as Skype, NTP, and �nger. The wrongly classi�ed
�ows in NDPI were labeled as Skype, RTP and RTCP, and in NBAR as Skype.
The classi�cation of BitTorrent tra�c, the second P2P application studied, is not
completely achieved by any of the classi�ers. PACE and Libprotoident achieve
again the highest precision (over 77%). The rest of the classi�ers present se-
vere problems to identify this type of tra�c. When misclassi�ed, the BitTorrent
tra�c is usually classi�ed as Skype.

The performance of most DPI tools with more traditional applications is sig-
ni�cantly higher. FTP tra�c is usually correctly classi�ed. Only L7-�lter and
NBAR present problems to label it. The false positives produced by L7-�lter are
because the tra�c is classi�ed as SOCKS. Table 3 also shows that all the clas-
si�ers can properly classify DNS tra�c. Similar results are obtained for NTP,
which almost all the classi�ers can correctly classify it. However, NBAR com-
pletely miss the classi�cation of this tra�c. SSH was evaluated in its Linux
version. Table 3 shows that NBAR almost classi�ed all the �ows while the rest
of classi�ers labeled more than 95% of them.

Similar performance is also obtained with RDP, usually employed by VoIP
applications, as shown in Table 3. Again, L7-�lter and NBAR can not classify
this application at all. The false positives for L7-�lter, Libprotoident, and NBAR
are mainly due to Skype, RTMP, and H323, respectively.



Unlike previous applications, the results for NETBIOS are quite di�erent.
Surprisingly, NBAR and NDPI are the only classi�ers that correctly label NET-
BIOS tra�c. PACE can classify 2/3 of this tra�c and OpenDPI only 1/4. On
the other hand, the patterns from L7-�lter and Libprotoident do not properly
detect this tra�c. The wrongly classi�ed �ows in Libprotoident are labeled as
RTP and Skype, and in L7-�lter as Edonkey, NTP, and RTP.

We also evaluated RTMP tra�c, a common protocol used by browsers and
plugins for playing FLASH content. It is important to note that only Libpro-
toident has a speci�c pattern for RTMP. Because of that, we have also counted
as correct the RTMP tra�c classi�ed as FLASH although that classi�cation is
not as precise as the one obtained by Libprotoident. L7-�lter and NBAR can not
classify this type of tra�c. The rest of the classi�ers achieve a similar precision,
around 80%. The surprising amount of false positives by NDPI is because some
tra�c is classi�ed as H323. L7-�lter errors are due to wrongly classi�ed tra�c
as Skype and TSP.

Table 3 also presents the results regarding the HTTP protocol. All of them
but L7-�lter can properly classify most of the HTTP tra�c. L7-�lter labels
all the tra�c as �nger or Skype. NDPI classi�es some HTTP tra�c as iMes-
sage_Facetime. The amount of errors from PACE is surprising, as this tool is
usually characterized by very low false positive ratio. All the wrong classi�ca-
tions are labeled asMeebo tra�c. The olderMeebo pattern available in OpenDPI
and the newer from NDPI seems not to have this problem.

Most incorrect classi�cations for all the tools are due to patterns that easily
match random tra�c. This problem especially a�ects L7-�lter and, in particular,
with the patterns used to match Skype, �nger and ntp tra�c. The deactivation
of those patterns would considerably decrease the false positive ratio but it
would disable the classi�cation of those applications. In [4], the authors use a
tailor-made con�guration and post-processing of the L7-�lter output in order to
minimize this overmatching problem.

Table 3. DPI evaluation
Application Classi�er % correct % wrong % uncl.

PACE 94.80 0.02 5.18
OpenDPI 0.45 0.00 99.55

Edonkey L7-�lter 34.21 13.70 52.09
NDPI 0.45 6.72 92.83

Libprotoident 98.39 0.00 1.60
NBAR 0.38 10.81 88.81

PACE 81.44 0.01 18.54
OpenDPI 27.23 0.00 72.77

BitTorrent L7-�lter 42.17 8.78 49.05
NDPI 56.00 0.43 43.58

Libprotoident 77.24 0.06 22.71
NBAR 27.44 1.49 71.07

PACE 95.92 0.00 4.08
OpenDPI 96.15 0.00 3.85

FTP L7-�lter 6.11 93.31 0.57
NDPI 95.69 0.45 3.85

Libprotoident 95.58 0.00 4.42
NBAR 40.59 0.00 59.41

PACE 99.97 0.00 0.03
OpenDPI 99.97 0.00 0.03

DNS L7-�lter 98.95 0.13 0.92
NDPI 99.88 0.09 0.03

Libprotoident 99.97 0.00 0.04
NBAR 99.97 0.02 0.02

PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00

NTP L7-�lter 99.83 0.15 0.02
NDPI 100.00 0.00 0.00

Libprotoident 100.00 0.00 0.00
NBAR 0.40 0.00 99.60

Application Classi�er % correct % wrong % uncl.

PACE 95.57 0.00 4.43
OpenDPI 95.59 0.00 4.41

SSH L7-�lter 95.71 0.00 4.29
NDPI 95.59 0.00 4.41

Libprotoident 95.71 0.00 4.30
NBAR 99.24 0.05 0.70

PACE 99.04 0.02 0.94
OpenDPI 99.07 0.02 0.91

RDP L7-�lter 0.00 91.21 8.79
NDPI 99.05 0.08 0.87

Libprotoident 98.83 0.16 1.01
NBAR 0.00 0.66 99.34

PACE 66.66 0.08 33.26
OpenDPI 24.63 0.00 75.37

NETBIOS L7-�lter 0.00 8.45 91.55
NDPI 100.00 0.00 0.00

Libprotoident 0.00 5.03 94.97
NBAR 100.00 0.00 0.00

PACE 80.56 0.00 19.44
OpenDPI 82.44 0.00 17.56

RTMP L7-�lter 0.00 24.12 75.88
NDPI 78.92 8.90 12.18

Libprotoident 77.28 0.47 22.25
NBAR 0.23 0.23 99.53

PACE 96.16 1.85 1.99
OpenDPI 98.01 0.00 1.99

HTTP L7-�lter 4.31 95.67 0.02
NDPI 99.18 0.76 0.06

Libprotoident 98.66 0.00 1.34
NBAR 99.58 0.00 0.42



3.1 Sub-classi�cation of HTTP tra�c

Our dataset also allows the study of HTTP tra�c at di�erent granularity (e.g.,
identify di�erent services running over HTTP). However, only NDPI can sub-
classify some applications at this granularity (e.g., Youtube, Facebook). Newer
versions of PACE also provide this feature but we had no access to it for this
study. Table 4 presents the results for four applications running over HTTP
identi�ed by NDPI. Unlike the rest of tools that basically classify this tra�c
as HTTP, NDPI can correctly give the speci�c label with precision higher than
97%. Furthermore, the classi�cation errors are caused by tra�c that NDPI clas-
si�es as HTTP without providing the lower level label.

Table 4. HTTP sub-classi�cation by NDPI
Application % correct % wrong % unclassi�ed
Google 97.28 2.72 0.00
Facebook 100.00 0.00 0.00
Youtube 98.65 0.45 0.90
Twitter 99.75 0.00 0.25

Another sub-classi�cation that can be studied with our dataset is the FLASH
tra�c over HTTP. However, the classi�cation of this application is di�erent for
each tool making its comparison very di�cult. PACE, OpenDPI and NDPI have
a speci�c pattern for this application. At the same time, these tools (as well as
L7-�lter) have speci�c patterns for video tra�c, which may or may not run over
HTTP. In addition, NDPI has speci�c labels for Google, Youtube and Facebook
that can also carry FLASH tra�c. Libprotoident and NBAR do not provide any
pattern to classify FLASH tra�c over HTTP. Table 5 shows that NDPI can
correctly classify 99.48% of this tra�c, 25.48% of which is classi�ed as Google,
Youtube or Facebook. PACE and OpenDPI can properly classify around 86% of
the tra�c. The errors produced in the classi�cation are almost always related to
tra�c classi�ed as HTTP with the exception of L7-�lter that classi�es 86.49%
of the tra�c as �nger.

Table 5. FLASH evaluation
Classi�er % correct % wrong % unclassi�ed
PACE 86.27 13.18 0.55

OpenDPI 86.34 13.15 0.51
L7-�lter 0.07 99.67 0.26
NDPI 99.48 0.26 0.26

Libprotoident 0.00 98.07 1.93
NBAR 0.00 100.00 0.00

4 Discussion

This section extracts the outcomes from the results obtained during the perfor-
mance comparison. Also, we discuss the limitations of our study. Table 6 presents
the summary of the results from Section 3. The Precision (i.e., �rst column) is
computed similarly to Section 3, but we take into account all the applications
together (i.e., 100 * # correctly classi�ed �ows / # total �ows). However, this
metric is dependent on the distribution of the dataset. Because of that, we also
compute a second metric, the Average Precision. This statistic is independent



from the distribution and is calculated as follow:

Avg. Precision =

∑N
i=1

correctly classified i flows
total i flows

N
(1)

where N is the number of applications studied (i.e., N = 10).
As it can be seen in Table 6, PACE is the best classi�er. Even while we were

not using the last version of the software, PACE was able to properly classify
94% of our dataset. Surprisingly for us, Libprotoident achieves similar results,
although this tool only inspect the �rst four bytes of payload for each direction.
On the other hand, L7-�lter and NBAR perform poorly in classifying the tra�c
from our dataset. The more fair metric, Avg. Precision, presents similar results.
PACE is still the best classi�er, however, it has increased the di�erence by several
points to the second best classi�er, Libprotoident. Unlike before, NDPI is almost
as precise as Libprotoident with this metric. L7-�lter and NBAR are still the
tools that present the worst performance.

Table 6. Summary
Classi�er % Precision % Avg. Precision

PACE 94.22 91.01
OpenDPI 52.67 72.35
L7-�lter 30.26 38.13
NDPI 57.91 82.48

Libprotoident 93.86 84.16
NBAR 21.79 46.72

Nonetheless, the previous conclusions are obviously tied to our dataset. Al-
though we have tried our best to emulate the real behavior of the users, many
applications, behaviors and con�gurations are not represented on it. Because
of that, it has some limitations. In our study we have evaluated 10 well-known
applications, however adding more applications as Skype or Spotify is part of
our ongoing future work. The results obtained from the di�erent classi�ers are
directly related to those applications. Thus, the introduction of di�erent ap-
plications could arise di�erent outcomes. The tra�c generated for building the
dataset, although has been manually and realistically created, is arti�cial. The
backbone tra�c would carry di�erent behaviors of the applications that are not
fully represented in our dataset (e.g., P2P clients running on port 80). Therefore,
the performance of the tools studied could not be directly extrapolated from the
current results, but it gives an idea of their precision in the evaluated set of ap-
plications. At the same time, the arti�cially created tra�c allowed us to publish
the dataset with full packet payloads.

5 Conclusions

This paper presents the �rst step towards validating the reliability of the accu-
racy of the network tra�c classi�ers. We have compared the performance of six
tools (i.e., PACE, OpenDPI, L7-�lter, NDPI, Libprotoident, and NBAR), which
are usually used for the tra�c classi�cation. The results obtained in Section 3
and further discussed in Section 4 show that PACE is, on our dataset, the most



reliable solution for tra�c classi�cation. Among the open-source tools, NDPI
and especially Libprotoident present the best results. On the other hand, NBAR
and L7-�lter present several inaccuracies that make them not recommendable
as a ground-truth generator.

In order to make the study trustworthy, we have created a dataset using
VBS [13]. This tool associates the name of the process to each �ow making its
labeling totally reliable. The dataset of more than 500K �ows contains tra�c
from popular applications like HTTP, Edonkey, BitTorrent, FTP, DNS, NTP,
RDP, NETBIOS, SSH, and RDP. The total amount of data properly labeled is
32.61GB. Furthermore, and more important, we release to the research commu-
nity this dataset with full payload, so it can be used as a common reference for
the comparison and validation of network tra�c classi�ers.

As the future work, we plan to extend this work by adding new applica-
tions to the dataset (e.g., Skype, Games) and especially focus on HTTP-based
applications. We also plan to introduce new tools to the study (e.g., NBAR2).

References

1. Dainotti, A. et al.: Issues and future directions in tra�c classi�cation. IEEE
Network 26(1) (2012) 35�40

2. Valenti, S. et al.: Reviewing Tra�c Classi�cation. In: Data Tra�c Monitoring and
Analysis, Springer (2013) 123�147

3. Fukuda, K.: Di�culties of identifying application type in backbone tra�c. In: Int.
Conf. on Network and Service Management (CNSM), IEEE (2010) 358�361

4. Carela-Español, V. et al.: Analysis of the impact of sampling on NetFlow tra�c
classi�cation. Computer Networks 55 (2011) 1083�1099

5. Alcock, S. et al.: Libprotoident: Tra�c Classi�cation Using Lightweight Packet
Inspection. Technical report, University of Waikato (2012)

6. Gringoli, F. et al.: Gt: picking up the truth from the ground for internet tra�c.
ACM SIGCOMM Computer Communication Review 39(5) (2009) 12�18

7. Dainotti, A. et al.: Identi�cation of tra�c �ows hiding behind TCP port 80. In:
IEEE Int. Conf. on Communications (ICC). (2010) 1�6

8. Karagiannis, T. et al.: Transport layer identi�cation of P2P tra�c. In: 4th ACM
Internet Measurement Conf. (IMC). (2004) 121�134

9. Shen, C. et al.: On detection accuracy of L7-�lter and OpenDPI. In: 3th Int. Conf.
on Networking and Distributed Computing (ICNDC), IEEE (2012) 119�123

10. Alcock, Shane and Nelson, Richard: Measuring the Accuracy of Open-Source
Payload-Based Tra�c Classi�ers Using Popular Internet Applications. In: IEEE
Workshop on Network Measurements. (2013)

11. Dusi, M. et al.: Quantifying the accuracy of the ground truth associated with
Internet tra�c traces. Computer Networks 55(5) (2011) 1158�1167

12. [Online]: Tra�c classi�cation at the Universitat Politècnica de Catalunya (UPC).
(2013) URL: http://monitoring.ccaba.upc.edu/traffic_classification.

13. Bujlow, T. et al.: Volunteer-Based System for classi�cation of tra�c in computer
networks. In: 19th Telecommunications Forum TELFOR, IEEE (2011) 210�213

14. [Online]: Volunteer-Based System for Research on the Internet (2012) URL: http:
//vbsi.sourceforge.net/.

15. Bujlow, T. et al.: Comparison of Deep Packet Inspection (DPI) Tools for Tra�c
Classi�cation. Technical report, UPC BarcelonaTech (2013)


