Parallel Reed/Solomon Coding on Multicore Processors

Peter Sobe

Institute of Computer Engineering
University of Luebeck, Germany

sobe@iti.uni-luebeck.de

currently at
Institute of Computer Science
University of Potsdam, Germany

SNAPI Workshop, May 3rd, 2010
Contents

1 Basics of Erasure-tolerant Coding

2 Cauchy Reed/Solomon

3 Equation-based Coding

4 Parallel Coding

5 Evaluation
Erasure-tolerant Codes

k data storage resources, e.g. disks
m redundant resources

regular data striping across k resources
encoding: calculation of m independent redundant blocks

\[
\begin{array}{cccccc}
\text{k : original data} & & & & \text{m : redundant data} & \\
\square & \square & \square & \square & \ldots & \square \\
\square & \square & \square & \square & \ldots & \square \\
\end{array}
\]

a code tolerates f failed storage resources: $f \leq m$

Criteria:

- Number tolerated faults: $f = m$ as the optimum
- Flexibility, when choosing k, m
- Computational cost for en- and decoding
Cauchy Reed/Solomon

Encoding:

- Multiplication of original data word \(o \) with a generator matrix \(G \)

\[
a = \begin{bmatrix} o \\ c \end{bmatrix} = G \cdot o = \begin{bmatrix} I \\ G_{sub} \end{bmatrix} \cdot o
\]

Example Reed/Solomon, 5+2:

- operations +, \(\cdot \) within \(GF(2^3) \)

as a Cauchy-Reed/Solomon code:

- projection to \(GF(2^1) \), binary logic
- operations XOR, AND
Cauchy Reed/Solomon

Decoding:
- equations system used for data recalculation

when 2nd and 3rd resource fail:
- operations +, · within $\text{GF}(2^3)$

by Cauchy-Reed/Solomon:
- projection to $\text{GF}(2^1)$, binary logic
- operations XOR, AND

\[
o = G^{-1} \ast a'
\]
Equations refer different bits within storage resources

different bits ⇒ units on resources ⇒ partitions on disks

Unit assignment for k=5, m=2

<table>
<thead>
<tr>
<th>resource</th>
<th>data</th>
<th>parities</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0</td>
<td>r1</td>
<td>r2</td>
</tr>
<tr>
<td>units</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

number of units per resource (ω)

- $\omega = 3$,
- generally $2^\omega > k + m$
Cauchy Reed/Solomon: Equation-based definition

Coding algorithm is an execution of several equations:
- either: instant application on data
- or: store and transform equations, apply them on a sequence of code words

Example of a 5+2 Reed/Solomon code:

direct encoding (45 XOR op.)

15 = XOR(2, 3, 4, 5, 7, 9, 11, 12)
16 = XOR(0, 2, 3, 7, 8, 9, 10, 11, 13)
17 = XOR(1, 3, 4, 6, 8, 10, 11, 14)
18 = XOR(0, 2, 4, 6, 7, 8, 11, 12, 13)
19 = XOR(0, 1, 2, 4, 5, 6, 9, 11, 14)
20 = XOR(1, 2, 3, 5, 6, 7, 10, 12)

direct decoding (42 XOR op.)

6 = XOR(0, 5, 17, 18, 20, 13, 14)
7 = XOR(1, 3, 5, 15, 17, 18, 19, 20, 12, 13)
8 = XOR(2, 4, 16, 19, 20, 12, 13, 14)
9 = XOR(2, 3, 4, 15, 16, 17, 19, 12, 13)
10 = XOR(0, 2, 5, 15, 19, 20, 14)
11 = XOR(1, 3, 15, 16, 18, 20, 12)

iterative encoding (33 XOR op.)

15 = XOR(B, C, D)
16 = XOR(D, E, F)
17 = XOR(3, 4, 8, E, H)
18 = XOR(2, 4, 6, 7, C, F)
19 = XOR(0, 2, 9, 11, B, H)
20 = XOR(5, 7, 10, 12, A, G)
A = XOR(2, 3) E = XOR(10, 11)
B = XOR(4, 5) F = XOR(0, 8, 13)
C = XOR(11, 12) G = XOR(1, 6)
D = XOR(7, 9, A) H = XOR(14, G)

iterative decoding (29 XOR op.)

6 = XOR(B, C)
7 = XOR(5, C, D, F)
8 = XOR(19, 14, A, G)
9 = XOR(3, 17, 13, D, G)
10 = XOR(2, 20, B, D)
11 = XOR(15, 16, 18, 20, F)
A = XOR(20, 13) D = XOR(15, 19)
B = XOR(0, 5, 14) F = XOR(1, 3, 12)
C = XOR(17, 18, A) G = XOR(2, 4, 12, 16)
Equations for coding

Separation:

- equation preparation
- equation interpretation for coding

![Diagram of encoder and decoder with storage system and failure description]
Equations for coding

Separation:

- equation preparation
- equation interpretation for coding
Equations for coding

Separation:

- equation preparation
- equation interpretation for coding
Equations for coding

Separation:

- equation preparation
- equation interpretation for coding
Equations for coding

Separation:

- equation preparation
- equation interpretation for coding
Equations for coding

Separation:
- equation preparation
- equation interpretation for coding
Equations for coding

Separation:

- equation preparation
- equation interpretation for coding
Parallel Coding

Obvious parallelism: block parallel coding

- same coding function on different data blocks
- a core interprets all equations
- a core streams only a part of the input data
Parallel Coding - Equation oriented

Equation-oriented coding

- a core interprets dedicated equations
- a core streams data which is referred by the dedicated equations
Parallel Coding Schedules

coding and decoding equations extended to schedules

schedule:
- equations assigned to cores
- XOR ops assigned to time steps
- data dependencies resolved

Schedule preparation: stacking of equations
Parallel Coding Schedules

Stacking of equations

Encoding equations, 33 XOR operations

- **Terminal equations**

 15 = XOR(B, C, D)
 16 = XOR(D, E, F)
 17 = XOR(3, 4, 8, E, H)
 18 = XOR(2, 4, 6, 7, C, F)
 19 = XOR(0, 2, 9, 11, B, H)
 20 = XOR(5, 7, 10, 12, A, G)

- **Temporary equations**

 A = XOR(2, 3)
 B = XOR(4, 5)
 C = XOR(11, 12)
 D = XOR(7, 9, A)
 E = XOR(10, 11)
 F = XOR(0, 8, 13)
 G = XOR(1, 6)
 H = XOR(14, G)

<table>
<thead>
<tr>
<th>cores</th>
<th>steps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B ⊕ C ⊕ D</td>
</tr>
<tr>
<td>1</td>
<td>7 ⊕ 9 ⊕ A</td>
</tr>
<tr>
<td>2</td>
<td>F ⊕ E ⊕ D</td>
</tr>
<tr>
<td>3</td>
<td>0 ⊕ 8 ⊕ 13</td>
</tr>
<tr>
<td>4</td>
<td>14 ⊕ G</td>
</tr>
<tr>
<td>5</td>
<td>2 ⊕ 4 ⊕ 6 ⊕ 7 ⊕ C ⊕ F</td>
</tr>
<tr>
<td>6</td>
<td>0 ⊕ 2 ⊕ 9 ⊕ 11 ⊕ B ⊕ H</td>
</tr>
</tbody>
</table>

Temporary units required

Temporary units available

A, B, H, D, F, C, G, E
Evaluation

Question: Is equation-oriented parallel coding beneficial?

Criteria:
- accessed data per core
- number of referenced storage resources (input, output)
- number of referenced units per resource and per core
- multiplicity of references
- number of temporary results taken from other cores
- number of time steps of a schedule
 (under absence of access delays, and synchrony of XOR operations)
Evaluation

ratio: accessed data per core

<table>
<thead>
<tr>
<th>Method</th>
<th>Block Parallel</th>
<th>Direct</th>
<th>Iterative</th>
<th>Improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>eqn.-oriented</td>
<td>0.166</td>
<td>0.566</td>
<td>0.344</td>
<td>0.266</td>
</tr>
</tbody>
</table>

accessed input resources

<table>
<thead>
<tr>
<th>Method</th>
<th>Block Parallel</th>
<th>Direct</th>
<th>Iterative</th>
<th>Improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>eqn.-oriented</td>
<td>5.0</td>
<td>5.0</td>
<td>3.83</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Lower values are better
Evaluation

Lower values are better
Evaluation

Lower values are better
Evaluation

Equation-oriented parallel coding:
- iterative equations only!
- improve: selecting good Cauchy matrices

Performance benefits:
- minimal schedule length
- multiple accesses reduced
- locality of accesses (resources, units)

Performance obstacles:
- access to temporary results from other cores
Summary

- Cauchy-Reed/Solomon code: XOR based
- Decomposition of coding into several parts, described by equations
- Equations: parameterize the encoding and decoding function
- Schedules: pre-calculated placement of equations on cores
- Iterative schedules: concentration of data accesses of a core on local regions
- Advantage for software-based coding performance on multicore processors