
The MPEG Query Format: Unifying
Access to Multimedia
Retrieval Systems

Mario Döller
University of

Passau

Ruben Tous
Universitat

Polit’ecnica de
Catalunya

Matthias Gruhne
Fraunhofer IDMT

Kyoungro Yoon
Konkuk University

Masanori Sano
Science & Technical

Research
Laboratories, NHK

Ian S. Burnett
RMIT University

Recent studies on multimedia devices

report that in 2009 shipments of multi-

media-enabled mobile phones will outnum-

ber shipments of TV sets (see http://www.

multimediaintelligence.com/index.php?option5

com_content&view5article&id578:-multimedia-

mobile-phone-shipments-surpass-tv-shipments-in-

2008-according-to-multimedia-intelligence&catid5

37:frontpagetitleonly&Itemid5142). Trends to-

ward portability, personalization, and interac-

tivity can be observed across a broad range of

market segments, representing a significant

increase in the production of multimedia con-

tent. This increased availability and use of

multimedia content highlights the need for

efficient multimedia data storage and retrieval

solutions.

Currently, there are numerous storage and

retrieval approaches ranging from commercial

products, such as Oracle Multimedia (see

http://www.oracle.com/technology/products/

intermedia/index.html), to the purely aca-

demic.1,2 The diversity of these individual

projects prevents users from experiencing

broad and unified access to different multime-

dia collections. In fact, almost every solution

provides a different retrieval interface and is

based on different multimedia metadata de-

scription formats, such as MPEG-7 (see http://

www.chiariglione.org/mpeg/standards/mpeg-7/

mpeg-7.htm), Metadata Encoding and Trans-

mission Standard (see http://www.loc.gov/

standards/mets/), and so on. An example of

the technology diversity in multimedia storage

and retrieval is the broad range of multimedia

query languages used across these projects, the

more well known approaches being XQuery and

its numerous extensions for multimedia,3 SQL/

MM, MMDOC-QL,4 and so on. Combining

these varied query approaches with alternate

metadata description formats and retrieval

interfaces prevents effective interoperability

among current multimedia retrieval systems.

The goal of the MPEG Query Format

(MPQF) is to facilitate and unify access to

distributed multimedia repositories. To achieve

this goal, the MPQF standard specifies precise

input and output parameters to express multi-

media requests and to allow clients easy

interpretation and processing of result sets.

Moreover, the management component of the

MPQF covers searching and the choice of the

desired multimedia services for retrieval. For

this purpose, the standard provides a means to

describe service capabilities and to undertake

service discovery.

Throughout this article, we use the term

multimedia service as a substitute for any multi-

media database, multimedia repository, or mul-

timedia retrieval system that supports the

MPQF. In turn, a multimedia service can denote

a single multimedia repository or an aggregated

service providing access to a multimedia repos-

itory set. It is also important to note that while

the MPQF will become part 12 of the MPEG-7

standard, the specification explicitly allows for

deployments using any XML-based multimedia

metadata description format.

82

Standards John R. Smith
IBM

Editor’s Note
The growth of multimedia is increasing the need for standards for

accessing and searching distributed repositories. The Moving Picture

Experts Group (MPEG) is developing the MPEG Query Format (MPQF)

to standardize this interface as part of MPEG-7. The objective is to make

multimedia access and search easier and interoperable across search

engines and repositories. This article describes the MPQF and highlights

some of the ways it goes beyond today’s query languages by providing

capabilities for multimedia query-by-example and spatiotemporal

queries.

—John R. Smith

1070-986X/08/$25.00 G 2008 IEEE Published by the IEEE Computer Society

Why a new query language?

To satisfactorily explain the need for a new

query language it’s necessary to take a detailed

look at currently available interfaces for mul-

timedia retrieval. The current landscape of

query languages especially designed for multi-

media applications includes many approaches.

In the literature, there are, for example,

extensions of SQL (for example, SQL/MM)

and Object Query Language (for example,

Pcte-Object-Query-Language, or POQLMM5),

languages bound to a specific metadata model

(for example, MMDOC-QL), languages con-

centrating on temporal or timeline retrieval

(for example, MQuery6), or languages that

integrate weighting capabilities for expressing

user preferences (for example, Weighted-Sim-

ilarity-Query-by-Example, or WS-QBE7).

Most of these multimedia query languages

use proprietary metadata models to express

descriptive information. Generally, this infor-

mation is represented by XML instance docu-

ments based on a specific XML schema—such as

TV-Anytime (see http://www.tv-anytime.org/)

or MPEG-7. In these cases, we need to consider

query languages designed for XML data; these

include solutions such as Information Retrieval

Query Language (XIRQL),8 XML Query Lan-

guage (XQL),9 or Tree Query Language (TQL),10

but the most well-known approach is XQuery.11

The main drawback of XML is its limitations in

expressing the content’s semantic meaning.

This drawback led to the development of the

Resource Description Framework (see http://

www.w3.org/TR/2004/REC-rdf-concepts-20040210/).

In contrast to XML, which provides a syntax to

encode data, RDF supports a mechanism to

express the semantics and relationships be-

tween and about data. Recent work uses RDF for

representing, reconciling, and semantically

tagging multimedia resources to improve mul-

timedia retrieval by semantic means.12 This

development created the need for domain

query languages; representative solutions in-

clude XsRQL (see http://www.fatdog.com/xsrql.

html) and the newest recommendation from

the W3C, Simple Protocol And RDF Query

Language (SPARQL).13

We can see then that a range of multimedia

query languages is available, leading to ques-

tions about the reason for developing a new

multimedia query language. Can we simply

categorize the MPQF as yet another query

language?

First, let’s consider more closely the pure

multimedia query languages: one common

drawback of most query languages is a lack of

support for weighting of query terms to reflect

user preferences. Furthermore, existing lan-

guages frequently are restricted to only one

media type, don’t have a formal semantic, and

rely on proprietary metadata descriptions that

prevent interoperability or only target a subset

of possible multimedia query paradigms. Also,

combinations of information retrieval (for

example, query-by-example) and exact retriev-

al on metadata (for example, finding a file

size greater than 100 Mbytes and with the

video’s producer being ‘‘John Doe’’) are not

supported.

Secondly, let’s look at XML-based query

languages, which are strong in expressing

data-centric, exact requests (such as give me

all images whose file size is greater than

100 Mbytes) but lack the ability to express

fuzzy requests common in multimedia retriev-

al (such as query-by-example). There already

are some approaches aimed at extending

XQuery in this direction.3 However, these

approaches are restricted to the XQuery data

model, which doesn’t contain semantics for

processing multimedia objects. Therefore, an

XML-based query language alone is inade-

quate for multimedia retrieval.

Finally, let’s consider SPARQL as represen-

tative of RDF query languages; it’s strong in

semantic search and suited for use in the

Semantic Web environment. Comparing

SPARQL to the MPQF reveals several similari-

ties. SPARQL is composed of three main parts:

query language, protocol, and XML results

format. The SPARQL protocol provides a

means for conveying SPARQL requests from

clients to query processors via HTTP or SOAP

communication and specifies how fault mes-

sages can be expressed. Similarly, the MPQF

introduces management tools that aid in

searching for and choosing desired multime-

dia services. These management tools include

service discovery, querying for service capabil-

ity, and service capability description. In

contrast to SPARQL, the MPQF doesn’t specify

and extend a specific binding (for example,

HTTP) but is, of course, aware of being

transported within a SOAP request. Further-

more, the MPQF supports a more comprehen-

sive set of error messages defined through

classification schemes.

83

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
0
8

The SPARQL XML results format specifies

how a possible result set can be encoded and

returned as an XML document. In the case of

the MPQF, the Output Query Format specifies

the same functionality. However, the OQF also

deals more precisely with the requirements of

multimedia retrieval as it provides ranking and

confidence information for every result item,

including paging functionality and support for

relevance feedback operations.

The most important section and differenti-

ation of a query language is its expressiveness

in formulating search requests. In the case of

SPARQL, formulating search requests is speci-

fied in the query language document. SPARQL

is a syntactically-SQL-like language for query-

ing RDF graphs via pattern matching (by

specifying a triple pattern). The queries them-

selves look and act like RDF. The language’s

features include basic conjunctive patterns,

value filters, optional patterns, and pattern

disjunction. SPARQL’s main strengths include

its simplicity in formulating requests, the

implicit join handling within the syntax, and

the semantic expressiveness related to RDF.

Nevertheless, like XQuery, SPARQL is not

designed for searching within multimedia

databases and doesn’t provide the unique

functionalities desirable for multimedia que-

ries. Such requirements include, for instance,

content-based queries (such as query-by-ex-

ample), fuzzy queries, or spatiotemporal que-

ries for audiovisual data.

It’s clear that there is the need for a

standardized multimedia query language. If

we consider the well-known quotation from

Tim Berners-Lee, ‘‘SPARQL is to the Semantic

Web (and, really, the Web in general) what

SQL is to relational databases,’’ our ambitious

aim is that the MPQF will be to multimedia

services what SQL is to relational databases.

MPQF concepts and benefits

Essentially, the MPQF is an XML-based

query language that defines the query and

reply formats exchanged between clients and

servers in a distributed multimedia search-

and-retrieval system. The two main benefits of

standardization of such a language are inter-

operability between parties in a distributed

scenario (for example, content providers,

aggregators, and clients) and platform inde-

pendence (which also offers benefits for non-

distributed scenarios). The result is that devel-

opers can construct applications exploiting

multimedia queries independent of the multi-

media service used; this capability fosters soft-

ware reusability and maintainability. As a tech-

nical specification from the Moving Picture

Experts Group (MPEG, see http://mpeg.chiariglione.

org), this initiative is an international, open

standard targeting all application domains.

Information and data retrieval

One key feature of the MPQF is that it

allows the expression of multimedia queries

combining the expressive style of information

and XML data-retrieval systems. Thus, the

MPQF combines, for example, keywords and

query-by-example with, for example, XQuery,

allowing the fulfillment of a broad range of

users’ multimedia information requirements.

Both approaches to data retrieval are designed

to facilitate clients’ access to information, but

from different points of view. Given a query

expressed in a user-oriented manner (for

example, an image of a bird with blue

wingtips), an information-retrieval system is

designed to retrieve information that might be

relevant even though the query is not formal-

ized. In contrast, a data-retrieval system (for

example, an XQuery-based database) deals

with a well-defined data model and is designed

to determine which objects of the collection

satisfy clearly defined conditions in a relation-

al algebra expression (for example, a movie’s

title, a video’s file size, or an audio signal’s

fundamental frequency). For a data-retrieval

system, like a relational database or an XML

repository, a single erroneous object among

thousands retrieved means a total failure. In

contrast, an information-retrieval system can

supply results that appear relevant and expect

a user to filter those results further.

With regard to information retrieval, the

MPQF offers many possibilities that include

but are not limited to query-by-example-

media, query-by-example-description, query-

by-keywords, query-by-feature-range, query-

by-spatial-relationships, query-by-temporal-re-

lationships, and query-by-relevance-feedback.

For data retrieval, the MPQF offers its own

XML query algebra for expressing conditions

over the multimedia-related XML metadata

(for example, MPEG-7, Dublin Core, or any

other XML-based metadata format) but also

offers the possibility of embedding XQuery

expressions.11

84

Standards
IE

E
E

M
u

lt
iM

e
d

ia

Query format overview

MPQF instances are XML documents that

can be validated against the MPQF XML

Schema. An MPQF instance always includes

the MpegQuery element as the root element

and beneath that the Query or Management

element (see Figure 1). MPQF instances with

the Query element are the usual requests and

responses of a multimedia search process. The

Query element can include the Input (Input

Query Format, or IQF) or Output (OQF)

element, depending on whether the document

is a request or a response. A special query input

constitutes the FetchResult element, which is

used, for example, in asynchronous mode for

collecting search results. Alternatively, below

the root element, an MPQF document can

include the Management element. Manage-

ment messages (which can be both requests

and responses) provide a means for requesting

service-level functionalities, such as multime-

dia-services discovery or other types of service

provision, interrogating the capabilities of a

service or configuring service parameters.

MPQF Data Model

An MPQF query is expressed in terms of a

certain information representation space. The

MPQF Data Model formally defines this infor-

mation representation space and constitutes

the basis of an MPQF query processor and

optimizer. When writing an MPQF query, we

must consider that it will be evaluated—for

example, by an MPQF aware interpreter or a

content provider responsible for distributing

the query—against one or more multimedia

services Also, we must consider that, from the

MPQF point of view, a multimedia service is an

unordered set of multimedia content contain-

ing, for example, a reference to audiovisual

data or text documents. Multimedia content,

formally described elsewhere,14 refers to the

combination of multimedia data and its

associated metadata (see Figure 2). The MPQF

allows search and retrieval of complete or

partial multimedia content data and metadata

by specification of a filter condition tree and

desired processing granularity. Conditions

within that tree operate on one evaluation

item at a given time, or two evaluation items if

a Join operation is used.

By default, an evaluation item is multime-

dia content in the multimedia service, but

other evaluation item types are possible. For

instance, an evaluation item can be a segment

of a multimedia resource, or an XPath item

related to the multimedia content’s metadata

XML tree, as defined in the XQuery 1.0 and

XPath 2.0 data model.15 As mentioned previ-

ously, the MPQF allows search and retrieval of

both complete and partial multimedia con-

tent. The scope of query evaluation and the

granularity of the result set can be determined

by an EvaluationPath element specified within

the query. If this EvaluationPath element is

not specified, the output result is provided as a

collection of multimedia content (as stored in

the repository) all satisfying the query condi-

tion.

Distributed multimedia retrieval scenarios

The MPQF defines a request-reply, XML-

based interface between a requester and a

responder. In the simplest scenario, the re-

quester might be a client and the responder

might be a multimedia-retrieval system. How-

ever, the MPQF is designed for more complex

scenarios in which clients interact, for in-

stance, with a content aggregator. The content

aggregator acts at the same time as both a

responder (from the client point of view) and

requester to several underlying content pro-

viders to which the client query is forwarded.

85

Figure 1. Schema

overview of the

uppermost elements of

the MPEG

Query Format.

Figure 2. The MPEG

Query Format Data

Model: multimedia

repository and

multimedia content.

Figure 3 depicts a possible setup for the use of

the MPQF.

Besides the benefit that any MPQF aware

client is able to interact in a standardized way

with any MPQF service, the management part

also supports the discovery of multimedia

services in a highly distributed and heteroge-

nous environment. For this purpose, the

management part of the standard explicitly

foresees service discovery functionality, which

might result in registry applications, such as

Corba’s naming service16 or the UDDI ser-

vice17 in Web services’ service-oriented archi-

tecture. Such a registry service allows distrib-

uted multimedia services’ registration (by

sending their service capability description)

and thus makes them available to a broader

community; consequently, the service provid-

er’s retrieval system becomes much more

valuable. Note that the standard only specifies

how a client can interact with such a registry

application; the actual process of registration

and its implementation are out the MPQF

standard’s scope.

Another aspect of a distributed-retrieval

scenario is the communication paradigm

employed and whether it’s synchronous or

asynchronous. Whereas the synchronous mode

satisfies most common multimedia retrieval

scenarios, it’s insufficient when the search

operation requires a long processing time or

the display capability of the client’s device (for

example, a mobile phone) is inadequate for

presenting the results. For such environments,

the MPQF standard supports a means for

signaling the multimedia service the need for

an asynchronous operation. In these cases, the

service responds with a query ID and time-span

information, which allows the client to fetch

the result from a different place at a later time

or on a different device.

Figure 3 shows the setup of a multimedia

information retrieval system with different

services and one service provider. The service

provider contains a list of services and their

functionality, and might also contain, for

example, services specifically for audio identi-

fication or face recognition. The client submits

a request to the service provider, which

analyzes the query and then submits adapted

queries to specific and relevant services. Each

service, in turn, processes a specific part of the

query and replies with a result list to the

service provider. The service provider aggre-

gates the result lists and creates a single result

list in reply to the client. Therefore, service-

provider processing is concentrated on the

needs of query distribution and result-list

aggregation. A description of a first service

provider for cross-modal search for video

identification using the MPQF can be found

elsewhere.18

XQuery support

The MPQF allows the embedding of an

XQuery 1.0 expression11 within an MPQF filter

condition tree. To be consistent with the

MPQF Data Model, the embedded XQuery

expression is restricted to the use of constructs

that produce a Boolean true-or-false decision

on a single evaluation item at the target

database. Therefore, within an XQuery expres-

sion included in the filter condition tree, no

output description is allowed.

Parts of the MPQF

Here we introduce the main parts of MPQF,

where the input query format provides means

for formulating requests, the output query

format describes a standardized response, and

the query management tools are about service

discovery and service description.

Input Query Format

The IQF describes the contents of the Input

element (see Figure 4) and defines the syntax

of messages sent by the client to the multime-

dia service. These messages specify the client’s

search criteria. The IQF’s two main compo-

86

Standards

Figure 3. Possible

MPEG Query Format

use scenario.

IE
E
E

M
u

lt
iM

e
d

ia

nents allow specification of a filter-condition

tree (by using the QueryCondition element)

and definition of the structure and desired

content of the service output (by the Out-

putDescription element). The IQF also allows

declaration of reusable resource definitions

and metadata paths (fields) within the QFDe-

claration element, and the set of services

where the query should be evaluated (the

ServiceSelection element) in the case of com-

munication with an aggregation service.

The optional QFDeclaration element allows

declaration of reusable definitions of data paths

and resources that can be referenced multiple

times within a query. A data path is declared by

a DeclaredField element, which contains a

relative or absolute XPath expression pointing

to an item of the service’s metadata. A Resource

element operates as container for one of the

following components:

& MediaResource describes a resource by

containing or pointing to the raw multi-

media material.

& DescriptionResource specifies the container

for any description based on a specific

schema specified by the namespace decla-

ration within the description.

The introduction of the QFDeclaration ele-

ment allows for significant reduction of the

query size if the same elements appear multi-

ple times in one query.

The OutputDescription element describes

the structure and content of the individual

result items within the result set. Furthermore,

it allows (by two optional attributes) the

definition of an overall item count and the

maximum number of items per output page.

The occurrence of the second attribute indi-

cates that paging of the result set is desired.

The OutputDescription’s main features follow:

& ReqField describes the data path to the

element, which a client asks to be returned.

Paths are specified either using absolute

XPath expressions, which refer to the

description’s root, or using relative XPath

expressions, which refer to a given sche-

ma’s complex type.

& ReqAggregateID describes the unique iden-

tifier of the aggregate operation the client

asks to be returned. When one or more

ReqAggregateIDs are used, the aggregate ID

should be grouped.

& GroupBy describes the grouping operation

the user wants to apply on the result set. For

this purpose, the GroupBy element allows

the specification of several GroupByField

elements that describe the key for the

grouping process and aggregation opera-

tions.

& SortBy describes the sort operation the

client wants to apply on a result set. The

result set can be sorted in increasing or

decreasing order according to a given Field

element or an aggregate expression. The

Field element contains an absolute or

relative XPath expression.

The QueryCondition supports a client ex-

pressing filter criteria for a retrieval. The main

entry point for formulating filter criteria is the

QueryCondition element (see Figure 4), which

features an optional EvaluationPath element,

an unbounded number of TargetMediaType

elements, and a choice between a Join and a

Condition element. The EvaluationPath (an

XPath expression) element specifies the gran-

ularity of the retrieval and therefore the

metadata fragment node related to the evalu-

ation item. For instance, in the case of MPEG-

7, the EvaluationPath //Video would focus the

retrieval to whole video objects whereas the

EvaluationPath //VideoSegment would lead to

the more specific video segment objects.

The TargetMediaType element contains

MIME-type descriptions of media formats that

are the targets for retrieval. For instance, the

MIME-type audio/mp3 would filter all results

for audio files depending on the MP3 format.

Further, diversity in filter criteria is provided

by the Condition element. The Condition

element is a placeholder for a Boolean expres-

sion type (see Figure 5 on the next page, for its

type hierarchy) and might result in an n-ary

87

Figure 4. The Input

Query Format.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
0
8

filter tree. As outlined in Figure 5, the filter

tree can be established by three main con-

structs, namely query types, comparison ex-

pressions, and Boolean operators. In general,

instances of query types always represent leaf

nodes within the filter tree. Nodes of type

comparison expression can occur as inner nodes

and leaf nodes. Nodes that represent Boolean

operators are always inner nodes. To indicate

the importance of individual parts during the

retrieval process, we can assign a preference

value to every Boolean expression element, and

hence to each node within the filter tree.

In the MPQF, a comparison expression is

defined as common by the following term: A

op B, where A, B M OperandClass and op M {,,

., 5 , # , $, ! 5, ›}. The symbol › defines a

contain operation for strings. OperandClass

denotes a representation of a specific data type,

such as Boolean, string, arithmetic, date and

time, or duration. Note that both operands (A,

B) must belong to the same OperandClass

within a comparison expression. Every element

of an OperandClass can be described by the

data type value, an XPath expression pointing

to a specific data type value, or a corresponding

expression (for example, string or arithmetic)

resulting in specific data type value. String,

arithmetic, and Boolean expressions are simi-

larly defined as comparison expressions but

restrict their operands (A, B) to the correspond-

ing data type (for example, string operands for

string expression, arithmetic operands for

arithmetic expressions, and so on).

The following short example (Code 1)

demonstrates the use of a comparison and

arithmetic expression for MPEG-7 documents.

By reverting to the previous term definition A

op B, the example instantiates for op an equal

comparison operation, for the operand A an

arithmetic expression, and for B an arithmetic

value (value 0). In series, the arithmetic

expression is composed of the operation (op)

modulus: the operand A is a relative XPath

expression pointing to an arithmetic value

(totalNumOfSamples attribute of the Audio-

LLDVectorType type) and operand B again is

an arithmetic value (value 2). During an

evaluation process, this filter condition would

result in documents that have an even number

in the totalNumOfSamples attribute of the

AudioLLDVectorType type.

The current MPQF standard provides the

following set of query types:

& QueryByMedia specifies a similarity or

exact-match query-by-example retrieval

where the example media can be an image,

video, audio, or text.

& QueryByDescription specifies a similarity or

exact-match query by example retrieval

where the example media is presented by

any XML-based multimedia description

format (for example, MPEG-7).

& QueryByFreeText specifies a free text re-

trieval where the focused or to-be-ignored

fields can be declared.

& QueryByFeatureRange specifies a range re-

trieval for, for example, low-level features

like color.

& SpatialQuery specifies the retrieval of spa-

tial elements within media objects (for

example, a tree in an image), which might

be connected by a specific spatial relation.

& TemporalQuery specifies the retrieval of

temporal elements within media objects

(for example, a scene in a video), which

might be connected by a specific temporal

relation.

& QueryByXQuery specifies a container for

limited XQuery expressions.

& QueryByRelevanceFeedback specifies a re-

trieval that takes into consideration result

items of a previous search as bad and/or

good examples.

88

Standards

Figure 5. Boolean

expression hierarchy.

IE
E
E

M
u

lt
iM

e
d

ia

& QueryByROI specifies a retrieval on (spatio-

temporal) region of interest in media

resources.

Output Query Format

The OQF deals with the specification of a

standardized format for multimedia query

responses (see the Output element in Fig-

ure 1). The two main components cover

paging functionality and the definition of

individual result items. Additionally, the

OQF provides a means for communicating

global comments (by the GlobalComment

element) and status or error information (by

the SystemMessage element). Using a global

comment, the responder can send general

messages, such as the service subscription

expiration notice or a message from a sponsor

that is valid for the whole result set. When a

proper result set can’t be composed, or when a

special message regarding the system behavior

should be communicated with the client, the

multimedia service can use the SystemMessage

element. This element provides three different

levels for signaling problems, namely status,

warning, and exception. The codes and de-

scriptions for the individual elements are

defined in annex A of the standard specifica-

tion. Finally, the validity period of a result set

is indicated by the expirationDate attribute.

The use of the maxPageEntries attribute at

the input query expresses a client’s desire to

retrieve a result set divided into individual

pages. If this flag is set, the multimedia service

is responsible for dividing the complete result

set into a series of individual MPQF instance

documents. For this purpose, the OQF pro-

vides two attributes, namely currPage and

totalPages, to identify the individual pages.

The ResultItem element of the OQF holds a

single record of a query result. In the MPQF

schema, the element is based on an abstract

type targeted at future extensibility and allows

more concrete instantiations. Figure 6 illus-

trates the standardized version of such an

extension.

The ResultItem has four attributes and six

elements. The four attributes are recordNum-

ber, rank, confidence, and originID. The

recordNumber is a positive integer and the

only required attribute. The recordNumber

ensures the distinct identification of each

record among the record set returned for the

given query, and can be used in relevance

feedback retrieval to refer to the relevance

records. The rank is an optional attribute to

indicate the record’s relative similarity to the

submitted query. The confidence is an option-

al attribute to demonstrate the subjective

correctness of the query result. The originID

is an optional attribute to indicate from which

URI the specific record came. For example,

when there are multiple service providers

involved with answering a given query, the

originID can help identify the service provider

from which the result item is received. The

available elements follow:

& Similar to the GlobalComment element,

the comment is a placeholder for a text

message to be transmitted to the client. The

contained information should be focused

on one specific result item.

& The TextResult element holds the retrieved

result item as text type.

& The Thumbnail element carries the URL of

a specific result item’s thumbnail image.

& The MediaResource element contains the

URL pointing to the location of the media

resource of the retrieved result item. For

example, a URL to the video or audio file.

& The Description element is a container for

any kind of metadata response based on an

XML schema. For example, if the multime-

dia service is composing the result set based

on the MPEG-7 standard, the Description

element holds an MPEG-7 instance docu-

ment; and if the service is composing the

result set based on the TV-Anytime stan-

dard, the Description element can hold an

instance document using TV-Anytime me-

tadata.

89

Figure 6. Schema

diagram of the Output

Query Format.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
0
8

& The AggregationResult element allows for

schema-valid instantiation of results of an

aggregation operation (for example, SUM).

The main difficulty in expressing an aggre-

gation operation is its missing Description

element within the service’s XML schema.

Therefore, an aggregated element is identi-

fied through the aggregateID attribute in

the OutputDescription element of the cor-

responding input query.

All these elements, except AggregationResult,

can have an optional fromREF attribute and

can occur a maximum of two times within one

result item. This attribute indicates the origin

result set in case of a Join operation.

Query management tools

The management part of the MPQF copes

with the task of searching for and choosing

desired multimedia services for retrieval. This

part includes service discovery, querying for

service capabilities, and service capability

descriptions. Figure 7 depicts the element

hierarchy of the management tools in the

MPQF. As described previously, the manage-

ment part of the query format consists of

either the input or output element, depending

on the direction of the communication (re-

quest or response).

A management request helps find suitable

services (for example, by interacting with a

registry service) that support the intended

queries or scan individual services for their

capabilities. The service’s capability is de-

scribed by its service capability description,

which determines the supported query format,

metadata, media formats, query types, expres-

sions, and usage conditions. A management

response contains the results of a service

discovery request initiated by the requester. A

service, aggregated service provider, or registry

service returns either a list of available service

capability descriptions or a system message in

case of an error. If no service is available or

there is no match to the requested capabilities,

an empty Output element is returned.

A service capability description determines

what type of retrieval functionality the respec-

tive service supports. The following elements

are supported:

& SupportedQFProfile describes a service’s

supported query format profile. A QFProfile

may define a subset of available query types

and expressions that a service is capable of

processing.

& SupportedMetadata describes the metadata

that can be processed by a certain service

using a list of addresses (URIs).

& SupportedExampleMediaTypes and Suppor-

tedResultMediaTypes indicate the media

formats supported by a multimedia service

for processing and responses. The formats

are specified by MIME types.

& SupportedQueryTypes and SupportedEx-

pressions describe the query types and

expressions supported by a search condi-

tion. Annex A of the standard specifies the

allowed information, types, and expres-

sions based on classification scheme terms.

& UsageConditions describe a certain service’s

usage conditions (for example, payment is

needed, authentication is required, and so

on). Similar to query types, usage condi-

tions are listed in a classification scheme.

The assignment and validity of a usage

condition can be specified fine granular (for

example, for a specific query type) or

general for the whole service.

The following code (Code 2) shows an

example of a service capability description.

The supported profile in this example is full.

The supported metadata is based on the

MPEG-7 schema and the supported media

types include MP3 and Advanced Audio

Coding, and result set, respectively. Moreover,

the description supports the following func-

tions: query types (100.3.6.1 stands for Quer-

yByMedia), expressions (100.3.1 means that all

Boolean expression types are supported), and

usage conditions (200.1 notifies that the

90

Standards

Figure 7. Overview of

the element hierarchy

of the MPEG Query

Format’s

management tools.

IE
E
E

M
u

lt
iM

e
d

ia

service requires authentication). For simplicity

and space concerns, we don’t present the full

classification scheme’s Uniform Resource Name.

The MPQF allows the expression of several

requests, such as query-by-image-example or

query-by-free-text, which a natural-language-

processing engine might need to analyze. For a

multimedia service provider, it’s likely that not

all functions specified in the MPQF are

supported. In such an environment, one of

the important tasks for an MPQF client is to

find the services that provide the desired query

functions and contain the desired media

format. The MPQF management tools support

client identification of desired services. For

this purpose, four conceivable service discov-

ery scenarios are specified:

& Tell me everything you know.

& Tell me the services supporting the desired

capability.

& Tell me the capability of the specified

services.

& Tell me if the specified services support the

specified capability.

The ‘‘tell me everything you know’’ scenar-

io assumes that a user knows the location of an

MPQF or registry service, and then wants to

know all the service provider’s functions or all

registered services. In this case, the client

issues an empty management input request

to the service. If the service provides an

aggregate service, all information on services

is collected and returned.

In the ‘‘tell me the services supporting the

desired capability’’ scenario, a client tries to

find the service providing the client’s desired

functions. The DesiredCapability element ex-

presses this scenario. This element states the

requested capabilities (for example, metadata

model, query types, and so on) the multimedia

service must provide.

In the ‘‘tell me the capability of the

specified services’’ scenario, the client is

provided with a means to ask for information

on all capabilities that a set of services

(identified by the ServiceID element) provide.

In the ‘‘tell me if the specified services

support the specified capability’’ scenario, the

service discovery process is a combination of

the DesiredCapability and ServiceID elements.

In this case, a client is asking whether a

specific set of services supports a given capa-

bility description.

There is a common return to a service-

discovery request. For any type of manage-

ment request, the same formatted instance is

returned. The result is embedded in the

management part’s Output element and con-

tains several AvailableCapability elements (as

presented in Code 2) describing all matching

services.

There are two different mechanisms for

service selection: either the client connects

directly to a service and performs the multi-

media queries, or the client uses a service

provider, which knows the other services and

forwards the queries to them. Connecting

directly to one service has the limitation that

a client can only request queries correspond-

ing to the service capabilities. A service

provider, on the other hand, can distribute

parts of the query to different services, which

might be specialized in handling this query

type.

Example scenarios

As mentioned previously, the MPQF pro-

vides many noteworthy concepts and filter

criteria for the expression of multimedia

requests. In this section, we highlight some

important characteristic features of the MPQF

and explain them in the context of usage

scenarios.

Simple scenario

In this example, we show the use of a

combination of free text and conditions over

91

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
0
8

the XML metadata. Keywords are the most

common way for searching, and they capture

user information requirements satisfactorily in

most situations. However, in multimedia con-

tent searches, the coexistence of many differ-

ent media types (possibly in many different

formats) often results in limited keyword-

based searches. Typically, these contain ex-

plicit conditions regarding the features of the

digital objects to be retrieved (for example file

format, file size, resolution, and language).

These searches, though simple, are common,

and the MPQF allows them to be expressed in

a simple way.

Consider, for example, a situation in which

a professional user wishes to buy large images

of Hong Kong to illustrate a publication. After

capturing the user criteria through a form or

some other kind of user-friendly interface,

these criteria could be formalized using the

MPQF and submitted to one or more service

providers. The example query in the following

code (Code 3) shows how QueryByFreeText

and conditions over the XML metadata can be

combined to express the user’s image require-

ments. The query requests images (in any

format) that are related to the keywords

‘‘Hong Kong’’ and which have a width greater

than 1,000 pixels. In this case, the query is

expressed in terms of MPEG-7 metadata, but

other formats could be possible if the service

provider required alternatives.

Query-by-example scenario

Here, we show use of QueryByMedia in the

medical domain. Query-by-example offers an

alternative approach whereby a search can be

expressed using one or more example digital

objects (for example a number of image files).

Description instead of the example object is

also considered query-by-example. In the

MPQF, these two situations are differentiated:

query-by-media applies to queries including

digital media objects, while query-by-descrip-

tion uses the metadata feature descriptions.

Imagine an example scenario related to the

medical domain. The Lister Hill National Center

for Biomedical Communications at the US

National Library of Medicine maintains a digital

archive of 17,000 cervical and lumbar spine

images. This collection of images is cataloged in a

limited way due to the prohibitive costs of having

radiologists analyze and annotate them with

metadata. Let’s imagine a doctor involved in an

epidemiology or clinical study trying to find like

reference material from prior stored images. The

doctor would probably query on the basis of one

or more example images and would retrieve a list

of images ranked by similarity. This retrieval

would be achieved in the MPQF through the use

of QueryByMedia, which uses a media sample

(such as an image or video) as the key for search.

The following code (Code 4) shows how

this query type would be used in combination

with other conditions over the XML metadata

to fulfill the described use case. The query

requests JPEG images that are similar to the

given sample image and that have an attached

92

Standards

Figure 8. Sample image

for spatial query.

IE
E
E

M
u

lt
iM

e
d

ia

Dublin Core metadata descriptor date greater

than 2002-01-15.

Query-by-example description scenario

QueryByMedia and QueryByDescription are

the MPQF’s fundamental operations and repre-

sent the query-by-example paradigm. The indi-

vidual difference lies in the sample data provided.

QueryByMedia uses a media sample, such as

image or video, as a key for search, whereas

QueryByDescription allows querying on the basis

of an XML-based description key. The example

query in the following code (Code 5) shows how

an example description can be included in a

query to form a condition. The query requests

JPEG images that possess descriptors exactly

matching the attached MPEG-7 descriptors.

SpatialQuery

The sample in the following code (Code 6)

illustrates the use of SpatialQuery, which allows a

certain spatial relation to be used as a condition.

Let’s assume that a multimedia service provides a

large set of images showing different animals.

As Figure 8 demonstrates, a user might be

interested in finding all images that show a cat

93

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
0
8

and a dog and that have the cat on the dog’s left

side. In this case, the query presented in Code 6

formulates this request by using the SpatialQuery

condition and a respective spatial relation.

Note that this example assumes that the

multimedia service is capable of extracting the

necessary information (object recognition, low-

or high-level features, and so on) to detect the

animals. However, the query can be modified

using further metadata descriptions as input

parameters.

The query in Code 6 specifies that the

output should use media resources by asserting

as ‘‘true’’ the attribute mediaResourceUse in

the OutputDescription element. Thus, a pos-

sible result set satisfying the request might

be of the form shown in the following code

(Code 7). Each result item is expressed by a

MediaResource element and contains record-

Number and rank information.

QueryByRelevanceFeedback

A relevance-feedback approach is a common

and widely used multimedia-retrieval paradigm

that employs client interaction to improve

retrieval efficiency. It allows users to tune ongoing

retrieval by indicating good and/or bad examples

of previous result sets. If the result sample of Code

7 is considered a starting point, there are three

result items. As an example, the first and third

result items are considered to be good results,

while the second is a poor match. The example

shown in the following code (Code 8) expresses a

relevance feedback condition by indicating the

two positive examples (recordNumber is used)

and one negative example by prefixing a NOT

condition. The previous result set is identified by

its mpqfID attribute value (mm1221).

Conclusions and outlook

The success of the MPQF depends primarily

on the following issues:

& As shown previously, there are many possible

multimedia retrieval interfaces. Therefore,

the number of simple interpreter implemen-

tations that map MPQF requests to target

retrieval systems is of vital importance.

& To enhance interoperability among retriev-

al systems, which is one of the MPQF

group’s main aims, research and develop-

ment needs to be carried out to support the

distribution of one request among hetero-

geneous retrieval systems (for example,

simultaneously address an MPQG-7 aware

database and Dublin Core aware database)

and to aggregate those individual results.

& The MPQF came out of MPEG-7 activities, but

it’s not tied to MPEG-7. Hence, it’s important

that the multimedia user community recog-

nize the MPQF’s versatility. This versatility

allows groups of users to define their own

metadata sets (for example as folksonomies

and informal tags) while retaining interoper-

ability in the vital search interface.

In addition to working toward finalizing

the MPQF so that it can be published as an

ISO/IEC standard, further work will include

94

Standards
IE

E
E

M
u

lt
iM

e
d

ia

creation of a set of reference software for the

MPQF by April 2009. The reference software

will concentrate on client and server tools and

will be available as an amendment to the

MPQF standard. Furthermore, investigations

will consider its adaption and use within

current MPEG technologies such as MPEG-21

or MPEG-A.

The standardization committee ISO/IEC JTC

1 SC29 WG1 (JPEG) initiated the JPSearch

project in 2004 to develop relevant technologies

to enable search-and-retrieval applications that

focus on JPEG image archives. Recently, the

JPEG community decided to adopt the MPQF for

the specification of the JPSearch Query Format.

JPSearch has decided to use an adapted version

of MPQF as its JPSearch Query Format.

Currently, three funded European Union

projects are planning to use the MPQF as an

interface for their multimedia retrieval en-

gines. The first, the Pharos project (see http://

www.pharos-audiovisual-search.eu/) is devel-

oping a platform for the retrieval of audiovi-

sual content. The Sapir project (see http://

www.sapir.eu/) concentrates on the develop-

ment of a large-scale, distributed, P2P archi-

tecture that will make it possible to search

audiovisual content using the query-by-exam-

ple paradigm. Finally, the Enthrone project

(see http://www.ist-enthrone.org) targets an

integrated management solution that covers

the entire audiovisual service distribution

chain, including protected content handling,

distribution across networks, and reception at

user terminals based on the MPEG-21 frame-

work. MM

Acknowledgment
The authors thank all the MPQF members for

their fruitful input and discussions during the

standardization process.

References
1. M. Döller and H. Kosch, ‘‘The MPEG-7 Multimedia

Database System (MPEG-7 MMDB),’’ J. Systems and

Software, vol. 81, no. 9, 2008, pp. 1559-1580.

2. M. Cord, P.-H. Gosselin, and S. Philipp-Foliguet,

‘‘Stochastic Exploration and Active Learning for Image

Retrieval,’’ Image and Vision Computing, vol. 25, no. 1,

2007, pp. 14-23.

3. L. Xue et al., ‘‘VeXQuery: An XQuery Extension for

MPEG-7 Vector-Based Feature Query,’’ Proc. Int’l Conf.

Signal-Image Technology and Internet- Based Systems,

2006, pp. 176-185, http://www.u-bourgogne.fr/

SITIS/06/Proceedings/index.htm.

4. P. Lui, A. Charkraborty, and L.H. Hsu, ‘‘A Logic

Approach for MPEG-7 XML Document Queries,’’ Proc.

Extreme Markup Languages, 2001; http://www.

idealliance.org/papers/extreme/proceedings/

html/2001/Liu01/EML2001Liu01.html.

5. A. Henrich and G. Robbert, ‘‘POQLMM: A Query

Language for Structured Multimedia Documents,’’

Proc. 1st Int’l Workshop Multimedia Data and Document

Engineering (MDDE), 2001, pp. 17-26.

6. J.D.N. Dionisio and A.F. Cardenas, ‘‘MQuery: A Visual

Query Language for Multimedia, Timeline and Simu-

lation Data,’’ J. Visual Languages and Computing, vol. 7,

no. 4, 1996, pp. 377-401.

7. I. Schmitt, N. Schulz, and T. Herstel, ‘‘WS-QBE: A QBE

Like Query Language for Complex Multimedia Que-

ries,’’ Proc. 11th Int’l Multimedia Modeling Conf.

(MMM), IEEE CS Press, 2005, pp. 222-229.

8. N. Furh and K. Grossjohann, ‘‘XIRQL: A Query Language

for Information Retrieval in XML Documents,’’ Proc. 24th

ACM-SIGIR Conf. Research and Development in Informa-

tion Retrieval, ACM Press, 2001, pp. 172-180.

9. J. Robie. XQL (XML Query Language), Aug. 1999;

http://www.ibiblio.org/xql/xql-proposal.html.

10. G. Conforti et al., ‘‘The Query Language TQL,’’ Proc.

5th Int’l Workshop Web and Data Bases (WebDB),

2002; http://db.ucsd.edu/webdb2002/papers.html.

11. S. Boag et al., XQuery 1.0: An XML Query Language,

W3C recommendation, Jan. 2007; http://www.w3.

org/TR/2007/REC-xquery-20070123/.

12. D. Bonino, F. Corno, and P. Pellegrino, ‘‘RQL: A

Declarative Query Language for RDF,’’ Proc. 11th Int’l

World Wide Web Conf. (WWW), ACM Press, 2002,

pp. 592-603.

13. E. Prud’hommeaux and A. Seaborne. SPARQL Query

Language for RDF, World Wide Web Consortium

(W3C) recommendation, Jan. 2008; http://www.w3.

org/TR/rdf-sparql-query/.

14. J.M. Martinez. MPEG-7 Overview, ISO/IEC JTC1/SC29/

W11 N5525, MPEG Requirements Group, March 2003.

15. M. Fernandez et al., XQuery 1.0 and XPath 2.0 Data

Model (XDM), W3C recommendation, Jan. 2007;

http://www.w3.org/TR/xpath-datamodel/.

16. Common Object Request Broker Architecture, Object

Management Group, 2008; http://www.omg.org/

spec/CORBA/.

17. Universal Description Discovery and Integration, OASIS,

2004; http://www.oasis-open.org/specs/.

18. M. Gruhne et al., ‘‘Distributed Cross-Modal Search

with the MPEG Query Format,’’ Proc. 9th Int’l

Workshop Image Analysis for Multimedia Interactive

Services, IEEE CS Press, 2008, pp. 211-214.

Contact author Mario Döller at mario.doeller@

uni-passau.de.

Contact editor John R. Smith at jsmith@us.ibm.com.

95

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
0
8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

