
RDF Databases for Querying XML. A Model-mapping
Approach

Rub́en Tous and Jaime Delgado

Universitat Pompeu Fabra (UPF), Dpt. de Tecnologia, Pg. Circumval.lació, 8. E-08003
Barcelona, Spain,

{ruben.tous, jaime.delgado }@upf.edu

Abstract. Some recent research works face the challenge to map XML doc-
uments to RDF triples. Ontologies are used to establish semantic connections
among XML applications, and some mechanisms have been defined to query
them with natural XML query languages like XPath and XML Query. Generally
structure-mappingapproaches define a simple translation between trivial XPath
expressions and a target RDF query language; however some XPath constructs
(those depending on node order) cannot be covered in astructure-mappingstrat-
egy. In contrast, our work takes themodel-mappingapproach, respectful with the
node order, that allows a complete mapping of any XPath axis to a single RDQL
query. The obtained XPath processor can be fed with an unlimited set of XML
schemas and/or RDFS/OWL ontologies. The queries are resolved taking in con-
sideration the structural and semantic connections descrived in the schemas and
ontologies. Such behaviour, schema-awareness and semantic integration, can be
useful for exploiting schema and ontology hierarchies in XPath queries.

1 Introduction

1.1 Motivation

Translating XML documents to RDF allows to take profit from the powerful descrip-
tive tools of Description Logics (materialised in RDFS and OWL constructs) allowing
XML documents interoperate at the semantic level [3]. This allows e.g. to declaratively
defining the semantic connections between two different XML schemas or to make
XPath queries truly schema-aware. A key element of this approach is providing some
mechanisms that allow to keep using natural XML query languages (XPath or XQuery)
over the RDF representation obtained. We improve other approaches demonstrating
that an XPath processor, respectful with the node order, can be implemented on top
of RDF. The resulting processor has some interesting properties, not present in con-
ventional implementations, like schema-awareness and IDREF-awareness. Of course
schema-awareness could also be obtained from existing XPath processors by rewrit-
ing the XPath queries with all the possible names from the inheritance hierarchy. For
queries involving two or more names we should cover all the possible combinations,
and all of that should be performed dinamically if we want to consider future changes
on the schemas. Such solution is clearly inefficient, complex to implement, difficult to
maintain and lets to the client applications the task of interact with the schemas and
ontologies and their specific APIs.



1.2 Related work. Model-mapping vs. Structure-mapping

In 2001, [17] defined the termsstructure-mappingandmodel-mappingto differentiate
between works that map the structure of some XML schema to a set of relational tables
([2] [15]) and works that map the XML model to a general relational schema ([17]
[18] [4]) respectively. The first ones simply translate XML Schemas or DTDs into a
set of database relations (generally one for each complex-type). However soon some
researchers realised that having relations with a structure so coupled with the XML
structure was not very flexible, because changes in the XML schema propagate to the
database schema. Furthermore, some information of the original XML data, the node
order, was lost during the translation (the data structure of XML documents is modeled
by an ordered tree).

To overcome the limitations ofstructure-mappingstrategies [17] [18] [4] suggested
to map the constructs of the XML Information Set [6] into a fixed database schema. This
schema provided structures to store the different types of nodes of XML according to [6]
(document, element, attribute, text, namespace, etc.) and their position in the tree. These
approaches, classified asmodel-mappingstrategies according to [17], are schema-less,
that means they’re independent of DTDs or XML schemas and their changes.

An analogous situation can be found today in the RDF field. Some works have ap-
peared focusing on the mapping between XML and RDF [3], but most part of them (all
those we have revised) take thestructure-mappingapproach according to the terminol-
ogy previously mentioned. However, despite most part of these works claim to achieve
a simple mapping between XPath and some RDF query language, the reality is that all
XPath axis cannot be mapped using this strategy, because of the ordered nature of XML
trees differs from the graph nature of RDF. Some XPath axis likefollowing-sibling(sus-
piciously omitted in all these works) cannot be translated with thestructure-mapping
approach.

[9] takes astructure-mappingapproach and defines a direct way to map XML doc-
uments to RDF triples ([3] classifies this approach asDirect Translation). [5], [3], and
[1] take also astructure-mappingapproach but focusing on defining semantic mappings
between different XML schemas ([3] classifies their own approach asHigh-level Me-
diator). They also describe some simple mapping mechanisms to cover just a subset
of XPath constructs. Other authors like [10] or [11] take a slightly different strategy
(though within thestructure-mappingtrend) and focus on integrating XML and RDF to
incorporate to XML the inferencing rules of RDF (strategies classified by [3] asEncod-
ing Semantics). Finally it’s worth mention the RPath initiative [14], that tries to define
an analogous language to XPath but for natural (not derived from XML) RDF data (this
last work doesn’t pursue interoperability between models or schemas).

2 An OWL ontology for the XML model (XML/RDF Syntax)

Our approach takes a strategy more similar to themodel-mappingapproach. We tried
to represent the XML Infoset [6] using RDFS and OWL axioms. This allows us to
represent any XML document without any restriction and without losing information
about node-order. A simplified description of the ontology in Description Logics syntax
(SHIQ-like style [21]) would be:



Document vNode

Element vNode

TextNode vNode

childOf vdescendant

parentOf vancestor

childOf =parentOf−

T rans(ancestor)
ancestor vancestorOrSelf

self vdescendantOrSelf

self vancestorOrSelf

self =sameAs

immediatePrecedingSibling vprecedingSiblinng

immediateFollowingSibling vfollowingSibling

immediatePrecedingSibling =immediateFollowingSibling−

T rans(followingSibling)

Fig. 2 shows graphically how the example of fig. 1 will be represented using the classes
and properties defined with OWL.

Fig. 1.XML simple example describing two movies



Fig. 2.RDF graph for movies example

3 An inference-based XPath processor

3.1 Overview

Figure 3 outlines how the processor works. The key issue is the XML-to-RDF mapping,
already present in other works, but that we face from themodel-mappingapproach. We
use the same approach with XSD, obtaining an RDF representation of the schemas.
Incorporating alternative OWL or RDFS ontologies is straightforward, because they

Fig. 3.Semantic XPath processor architecture overview

are already compatible with the inference engine. In the figure we can see also that an
OWL representation of the XML model is necessary. This ontology allows the infer-
ence engine to correctly process the different XPath axis and understand how the XML
elements relate to the different XSD constructs.



3.2 XPath Formal semantics

XPath is a language for addressing parts of an XML document. The language can be
formally defined by describing the operations on this data model. It is not a coincidence
that some of the axioms are already present in the XML/RDF ontology, because they
map directly to XML primitives (e.g.child).

First we must define the function E, corresponding to theXPathExprrule from the
EBNF grammar [16].

E : Path → Node → sequence(Node)

E[[e1/e2]]x = {x2 | x1 ∈ E[[e1]]x ∧ x2 ∈ E[[e2]]x1}
E[[a :: t]]x = {x1 | x1 ∈ Aa(x) ∧ Tt(x1)}
E[[e[p]]]x = {x1 | x1 ∈ E[[e]]x ∧ P [[p]]x1}

The functionAa describes both theForwardAxisand theReverseAxisrules from the
grammar.

Aa :→ Node → sequence(Node)

Achild(x) = {x1 | childOf(x1, x)}
Adescendant(x) = {x1 | childOf(x1, x)∨

(childOf(x2, x)
∧ x1 ∈ Adescendant(x2))}

Adescendant−or−self (x) = {x} ∪ {x1 | x1 ∈ Adescendant(x)}
Aparent(x) = {x1 | childOf(x, x1)}

Aancestor(x) = {x1 | childOf(x, x1)∨
(childOf(x, x2)
∧ x1 ∈ Aancestor(x2))}

Aancestor−or−self (x) = {x} ∪ {x1 | x1 ∈ Aancestor(x)}
Apreceding−sibling(x) = {x1 | precedingSibling(x1, x)}

Apreceding(x) = {x1 | x1 ∈ Adescendant−or−self (x2)
∧ x2 ∈ Apreceding−sibling(x3)}
∧ x3 ∈ Aancestor−or−self (x)}

Afollowing−sibling(x) = {x1 | precedingSibling(x, x1)}
Afollowing(x) = {x1 | x1 ∈ Adescendant−or−self (x2)

∧ x2 ∈ Afollowing−sibling(x3)}
∧ x3 ∈ Aancestor−or−self (x)}

Aattribute(x) = {x1 | attributeOf(x1, x)}
Aattribute(x) = {x1 | namespaceOf(x1, x)}



The function T describes theNodeTestrule from the grammar.

T : NodeTest → Node → Boolean

T∗(x) = {true}
Tn(x) = {hasName(x, n)}

Tnode()(x) = {type(x,′ node′)}
Ttext()(x) = {type(x,′ textNode′)}

Telement()(x) = {type(x,′ elementNode′)}

The function P describes thePredicatesrule from the grammar. There are a lot of
different predicates but defining all is out of the scope of this document. As an example
we define here the predicate that expresses the existence of a specific sub-tree as a
condition.

P : Predicate → Node → Boolean

P [[p]]x = {∃x1 ∈ E[[p]]x}

3.3 XPath translation to RDQL

RDQL [13] is the popular RDF query language from HP Labs Bristol. The specification
of RDQL was submitted to the W3C in 9 January 2004. Each XPathaxiscan be mapped
into one or more triple patterns of the target RDQL query. Analogously eachnodetest
andpredicatecan be mapped also with just one ore more triple patterns. The output
RDQL query always takes the form:

SELECT *
WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)
[triple pattern 2]
[triple pattern 3]
...
[triple pattern N]

USING
xmloverrdf FOR <http://dmag.upf.edu/xml#>

The translation can be deduced from the XPath formal semantics. For example, the
followingaxis is described as:

Afollowing(x) = {x1 | x1 ∈ Adescendant−or−self (x2)
∧ x2 ∈ Afollowing−sibling(x3)}
∧ x3 ∈ Aancestor−or−self (x)}

So thefollowingaxis must be translated to:



(?vi, <xmloverrdf:ancestor-or-self>, ?vi-1)
i = i + 1

(?vi, <xmloverrdf:following-sibling>, ?vi-1)
i = i + 1
(?vi, <xmloverrdf:descendant-or-self>, ?vi-1)
i = i + 1

There are also simple conversion rules for allnodeTestsandpredicatesbut we omit
them to save space. The notation used includes variable names likevi andvi-1 where
i begins with value2 (because of the first triple pattern is always the same as shown
before). So if we would have just the expression:

/child::movies/child::movie

We will translate the first child axis to:

(?v2, <xmloverrdf:childOf>, ?v1)

The first node test to:

(?v2, <xmloverrdf:hasName>,
<http://dmag.upf.edu/xmlrdf/names#movies>)

The second child axis to:

(?result, <xmloverrdf:childOf>, ?v2)

And the second node test to:

(?result, <xmloverrdf:hasName>,
<http://dmag.upf.edu/xmlrdf/names#movie>)

The complete WHERE clause will appear as:

WHERE
(?v1, <rdf:type>, <xmloverrdf:document>)
,(?v2, <xmloverrdf:childOf>, ?v1)
,(?v2, <xmloverrdf:hasName>,

<http://dmag.upf.edu/xmlrdf/names#movies>)
,(?result, <xmloverrdf:childOf>, ?v2)
,(?result, <xmloverrdf:hasName>,

<http://dmag.upf.edu/xmlrdf/names#movie>)

3.4 Example results

An example query could be:

/child::movies/child::movie/child::title
(in abbreviated form /movies/movie/title)

That is translated to:



SELECT *
WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)
, (?v2, <xmloverrdf:childOf>, ?v1)
, (?v2, <xmloverrdf:hasName>,

<http://dmag.upf.edu/xmlrdf/names#movies>)
, (?v3, <xmloverrdf:childOf>, ?v2)
, (?v3, <xmloverrdf:hasName>,

<http://dmag.upf.edu/xmlrdf/names#movie>)
, (?result, <xmloverrdf:childOf>, ?v3)
, (?result, <xmloverrdf:hasName>,

<http://dmag.upf.edu/xmlrdf/names#title>)

Result: 6, 9 (node numbers, see figure)

4 Incorporating schema-awareness

4.1 Mapping XML Schema to RDF

Having an XML instance represented with RDF triples opens a lot of possibilities. As
we have seen before, we can use OWL constructs (subPropertyOf, transitiveProperty,
sameAs, inverseOf, etc.) to define the relationship between the different properties de-
fined in the ontology. In our ontology for the XML model, the object of thehasName
property is not a literal but a resource (an RDF resource). This key aspect allows ap-
plying to hasNameall the potential of the OWL relationships (e.g. defining ontologies
with names relationships). So, if we want our XPath processor to be schema-aware, we
just need to translate the XML Schema language to RDF, and to add to our XML/RDF
Syntax ontology the necessary OWL constructs that allow the inference engine to un-
derstand the semantics of the different XML Schema components. The added axioms
in Description Logics syntax (SHIQ-like style [21]) would be:

hasName vfromSubstitutionGroup

T rans(fromSubstitutionGroup)
hasName vfromType

T rans(fromType)
fromType vsubTypeOf

4.2 A simple example of schema-aware XPath processing

The next example illustrates the behavior of our processor in a schema-related XPath
query. Take this simple XML document:

<A>
<B id=’B1’ />
<B id=’B2’>



<C id=’C1’>
<D id=’D1’></D>

</C>
</B>
<B id=’B3’/>

</A>

And its attached schema:

<schema>
<complexType name=’BType’>

<complexContent>
<extension base=’SUPERBType’></extension>

</complexContent>
</complexType>
<element name=’B’

type=’BType’ substitutionGroup=’SUPERB’ />
</schema>

When evaluating the XPath query//SUPERB, our processor will return the elements
with IDs ’B1’, ’B2’ and ’B3’. These elements have a name with value ’B’, and the
schema specifies that this name belong to the substitution group ’SUPERB’, so they
match the query. Also, when evaluating the query//SUPERBType, the processor will
return ’B1’, ’B2’ and ’B3’. It assumes that the query is asking for elements from the
type SUPERBType or one of its subtypes.

5 Implementation and performance

The work has been materialised in the form of a Java API. We have used the Jena 2 API
[8] for RDQL computation and OWL reasoning. To process XPath expressions we have
modified and recompiled the Jaxen XPath Processor [7]. An on-line demo can be found
athttp://dmag.upf.edu/contorsion.

Though performance wasn’t the target of the work, it is an important aspect of the
processor. We have realised a performance test over a Java Virtual Machine v1.4.1 in a
2GHz Intel Pentium processor with 256Mb of memory. The final delay depends mainly
on two variables, the size of the target documents, and the complexity of the query.
Table 1 shows the delay of the inferencing stage for different document depth levels
and also for some different queries.

The processor behaves good with medium-size documents and also with large ones
when simple queries are used (queries that not involve transitive axis), but when docu-
ment size grows the delay related to the complex queries increases exponentially. Some
performance limitations of the Jena’s OWL inference engine have been described in
[22]. We are now working on this problem, trying to obtain a more scalable inference
engine. However, the current processor’s performance is still acceptable for medium-
size XML documents.



Table 1.Performance for different document depth levels

expression 5d 10d 15d 20d

/A/B 32ms 47ms 47ms 62ms
/A/B/following-sibling::B 125ms 46ms 48ms 47ms
/A/B/following::B 125ms 62ms 63ms 47ms
/A//B 172ms 203ms 250ms 219ms
//A//B 178ms 266ms 281ms 422ms

6 Uses of the obtained XPath processor

6.1 XML Schema for metadata interoperability

The object-oriented nature of some XML Schema constructs allows using them to in-
crease the interoperability of applications or to fix interoperability problems in an el-
egant way. For example, thesubstitutionGroupinheritance mechanism can be used to
bind the names of two different XML languages. Take for example a simple schema
for describing movies records. The schema defines the elementsmovies, movie, title,
year, country, runtime, etc. It could be interesting in some context to have the possibil-
ity to write the element and attribute names in a language different from English. The
next XML fragment is an instance of the previous schema but using Spanish instead of
English for element names.

<pelculas>
<pelicula id=’m1’>

<titulo>Blade Runner</titulo>
<estreno>1982</estreno>
<pais>USA</pais>
<duracion>117</duracion>

</peliculas>

We can generate a schema that binds the different names from the Spanish version to
the (master) English version.

<schema>
<element name=’peliculas’ substitutionGroup=’movies’>

<xs:complexType>
<xs:sequence>

<element name=’pelicula’ substitutionGroup=’movie’>
<complexType>

<sequence>
<element name=’titulo’ substitutionGroup=’title’/>
<element name=’estreno’substitutionGroup=’year’/>
<element name=’pais’substitutionGroup=’country’/>
<element name=’duracion’substitutionGroup=’runtime’/>

</sequence>
<attribute name=’id’/>

</complexType>



</element>
</sequence>

</complexType>
</element>
</schema>

Now, using our schema-aware XPath processor, if we ask for/movie/countrywe will
obtain the same as for the/pelicula/pais. So, we can develop applications that are not
tied to a particular schema but to an abstract one. Applying this idea in a scenario
with a posteriori interoperability needs could not be always possible, because these
situations use to be better faced with procedural tools like XSLT. However the analysis
of the possibilities of this strategy is still work-in-progress, because OWL offers enough
expressivity to define complex declarative mappings among schemas.

6.2 Application to model-mapping

Executing XPath queries over non-XML data Our approach allows executing XPath
queries over a RDF representation of data from some data model for which a mapping
with XML has been defined. There is no need of a transcoding between the XPath
query and the new data model, because the primitives of the two models (XML and for
example the Relational Model) have been already mapped and the inference engine can
resolve the query.

Example: XPath over relational data For a better understanding of the concept let’s
see a simple example. Take a relational version of the movies XML document as illus-
trated in the table 2.

Table 2.Relational version of the movies example

Title Director

Paris, TexasWim Wenders
Rio Bravo Howard Hawks

We have developed a test OWL ontology for the Relational Model. Fig. 4 shows a
graphical view of an instance representing the movies example (we omit the ontology
and the RDF serialization of the example for space reasons). We also have defined the
mapping between the two models in a different OWL ontology. Here comes an extract.
Now we can execute a XPath query over the RDF serialization of the relational version
of the movies example. For example the XPath query:

/child::node()/descendant::title

Will be translated to the query:



Fig. 4.RDF representation of the relational version of the movies example

SELECT *
WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)
, (?v2, <xmloverrdf:childOf>, ?v1)
, (?result, <xmloverrdf:descendant>, ?v2)
, (?result, <xmloverrdf:hasName>, "title")

USING
xmloverrdf FOR <http://dmag.upf.edu/xml#>

Result: 5, 7 (node numbers, see figure)

The query expresses restrictions with XML constructs, but these constructs are mapped
by the inference engine to the equivalent relational operations. Inversely, if we would
describe another query language like for e.g. SQL with the appropriate RDQL opera-
tions (to operate over the RDF representation of the relational model), we could execute
SQL queries directly over XML.

XPath over reified RDF data If we want to apply the strategy to execute XPath expres-
sions over natural RDF data (not derived from XML), we must provide an RDF/RDF
Syntax (although it might seem rather redundant) because we need to express the RDF
primitives in OWL to be able to define an OWL mapping between them and the XML/RDF
Syntax. However, this is exactly what RDF reification does. Reification is the ability to
treat an RDF statement as a resource, and hence to make assertions about that statement.
RDF represents a reified statement as four statements with particular RDF properties
and objects: the statement (S, P, O), reified by resource R, is represented by:

R rdf:type rdf:Statement
R rdf:subject S
R rdf:predicate P
R rdf:object O



Fig. 5 shows a natural RDF version of the movies example. If we reify all the statements
of the model we obtain the quadlets of Fig. 6 (the{x, rdf:type, Statement} have been
excluded from the figure).

Fig. 5.Natural-RDF representation of the movies example

We have partially mapped the reified RDF model (we could call it RDF/RDF Syn-
tax) to our XML/RDF Syntax and obtained promising results with simple XPath queries.
Now if we translate the following XPath query to RDQL:

Fig. 6.Reified statements from the natural-RDF representation of the movies example

/child::movie/child::title

We will obtain:



SELECT *
WHERE

(?v1, <xmloverrdf:hasName>,
<http://dmag.upf.edu/eg#movie>),

(?v2, <xmloverrdf:childOf>, ?v1),
(?v2, <xmloverrdf:hasName>,

<http://dmag.upf.edu/eg#title>),
(?v3, <xmloverrdf:childOf>, ?v2),
(?v3, <xmloverrdf:hasValue>, ?result)

Result: "Paris, Texas", "Rio Bravo"

The XML/RDF-RDF/RDF mapping is still work in progress, and the discussion around
it overcomes the scope and the physical limits of this paper.

7 Conclusions

In this paper we have proposed themodel-mappingapproach for the XML-to-RDF
mapping, contributing to the recent research trend that suggests the mapping of XML
documents to triples allowing XML documents interoperate at the semantic level [3].
We expose why an RDF representation based on themodel-mapping approachallows
to retain the node order, in contrast with the usualstructure-mappingapproach. We also
have outlined the algorithm used internally to translate the XPath expressions to RDQL
queries. The work has been materialised in the form of a Java API, an on-line demo can
be found athttp://dmag.upf.edu/contorsion.

As we have shown the processor can be used to express schema-aware queries, to
face interoperability among different XML languages or to integrate XML with RDF
sources. We have also evaluate the possibility to define a mapping between another data
model and XML, in such a way that RDQL queries obtained from XPath expressions
over non-XML data can be resolved by inference, without an explicit mapping between
XPath and the external model. We have shown examples for the Relational Model and
also for RDF (with the help of reification).

References

1. B.Amann,C.Beeri,I.Fundulaki,and M.Scholl.Ontology-Based Integration of XML Web Re-
sources. In Proceedings of the 1st International Semantic Web Conference (ISWC 2002),pages
117-131,2002.

2. Christophides, V., Abiteboul, S., Cluet, S., and Scholl, M. 1994. From structured documents
to novel query facilities. SIGMOD Rec. 23, 2 (June), 313-324.

3. Cruz, I., Xiao H., Hsu F. An Ontology-based Framework for XML Semantic Integration. Uni-
versity of Illinois at Chicago. Eighth International Database Engineering and Applications
Symposium. IDEAS’04. July 7-9, 2004 Coimbra, Portugal.

4. Florescu,D.AND Kossmann, D. 1999. Storing and querying XML data using an RDMBS.
IEEE Data Eng. Tech. Bull. 22, 3, 27-34.



5. A. Y. Halevy, Z. G. Ives, P. Mork, I. Tatarinov: Piazza: Data Management Infrastructure for
Semantic Web Applications, 12th International World Wide Web Conference, 2003

6. XML Information Set (Second Edition) W3C Recommendation 4 February 2004
http://www.w3.org/TR/xml-infoset/

7. Jaxen: Universal Java XPath Engine http://jaxen.org/
8. Jena 2 - A Semantic Web Framework http://www.hpl.hp.com/semweb/jena.htm
9. M.C.A.Klein. Interpreting XML Documents via an RDF Schema Ontology.In Proceedings

of the 13th International Workshop on Database and Expert Systems Applications (DEXA
2002),pages 889-894, 2002.

10. L.V.Lakshmanan and F.Sadri.Interoperability on XML Data.In Proceedings of the 2nd Inter-
national Semantic Web Conference (ICSW 03),2003.

11. P.F.Patel-Schneider and J.Simeon.The Yin/Yang web:XML syntax and RDF semantics.In
Proceedings of the 11th International World Wide Web Conference (WWW2002),pages 443-
453,2002.

12. RDF/XML Syntax Specification (Revised) W3C Recommendation 10 February 2004
http://www.w3.org/TR/rdf-syntax-grammar/

13. RDQL - A Query Language for RDF W3C Member Submission 9 January 2004
http://www.w3.org/Submission/RDQL/

14. RPath - RDF query language proposal http://web.sfc.keio.ac.jp/ km/rpath-eng/rpath.html
15. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., Dewitt,D.J.,and Naughton,J.F. 1999.

Relational databases for querying XML documents: Limitations and opportunities. In Pro-
ceedings of the 25th International Conference on Very Large Data Bases (VLDB, Edin-burgh,
Scotland, Sept. 7-10). Morgan Kaufmann, San Mateo, CA, 302-314.

16. XML Path Language (XPath) 2.0 W3C Working Draft 23 July 2004 http://www.w3.org/
TR/xpath20/

17. M. Yoshikawa, T. Amagasa, T. Shimura and S. Uemura, XRel: A Path-Based Approach to
Storage and Retrieval of XML Documents using Relational Databases, ACM Transactions on
Internet Technology, Vol. 1, No. 1, June 2001.

18. Zhang, J. 1995. Application of OODB and SGML techniques in text database: an electronic
dictionary system. SIGMOD Rec. 24, 1 (Mar.), 3-8.

19. Dave Reynolds. Jena 2 Inference support http://jena.sourceforge.net/inference/
20. OWL Web Ontology Language Overview. W3C Recommendation 10 February 2004

http://www.w3.org/TR/owl-features/
21. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive descrip-

tion logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors, Proc. of
the 6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), number
1705 in Lecture Notes in Artificial Intelligence, pages 161-180. Springer, 1999.

22. Dave Reynolds. Jena 2 Inference support http://jena.sourceforge.net/inference/


