
s i
is

uch
its
the

b
re

-

h-
l to
s
ric

er
an
ue
by
d
of

ue
ve

ges
ay
ven

e
lies
g

ady
ach

d
e
ack
ay

e
tly,
64
gic
is
ich

en
tral
the
rn
es
e
n

s
of

st
at

es
[5].

be
ter
tion
he
be
his
the

Reducing the Complexity of the Issue Logic

Ramon Canal and Antonio González
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Jordi Girona, 1-3 Mòdul D6

Barcelona, E-08034
ABSTRACT
The issue logic of dynamically scheduled superscalar processor
one of their most complex and power-consuming parts. In th
paper we present alternative issue-logic designs that are m
simpler than the traditional scheme while they retain most of
ability to exploit ILP. These alternative schemes are based on
observation that most values produced by a program are used
very few instructions, and the latencies of most operations a
deterministic.

Keywords: instruction issue logic, out-of-order issue, complexity
effective design, wide-issue superscalar.

1. INTRODUCTION

An out-of-order issue scheme is a common trend in today’s hig
performance microprocessor design due to its higher potentia
exploit instruction-level parallelism (ILP) for some application
whose behavior is hard to predict at compile time (e.g. non-nume
applications such as SpecInt).

However, the hardware structures required by an out-of-ord
issue scheme are rather complex, which translates in signific
delays that may challenge the cycle time [17]. In addition, the iss
logic is responsible for a significant part of the energy consumed
a high-performance microprocessor [7]. The complexity an
energy consumption of the issue logic depends on a number
microarchitectural factors, mainly the size of the instruction que
and the issue width [16,17,27]. These two parameters ha
experienced a continuous increase, and future projections sug
that this trend will continue in the near future. Therefore, the del
and energy consumption of the issue logic is expected to be e
more critical in the future.

The main complexity of the issue logic comes from th
associative search that is required by the issue logic, which re
on awake-upandselectmechanism [20]. The wake-up uses lon
ed
can

ct

ent
nce
lly,

Copyright notice for the Proceedings of the 15th
International Conference on Supercomputing (ICS-
01). Sorrento (Italy). June 16-21, 2001.
s

y

t

t

wires to broadcast the tags (and data, sometimes) to the non-re
instructions, and a large number of comparators that compare e
broadcast tag with every source operand’s tag.

Besides, the issue logic is not suitable for a pipeline
implementation [17] since this would significantly degrad
performance by introducing some delay between the back-to-b
execution of dependent instructions. Therefore, the issue logic m
significantly impact the clock-cycle time. At the same time, th
issue logic becomes a significant consumer of power. Recen
Gowan, Biro and Jackson [10] reported that in an Alpha 212
operating at the maximum operating frequency the issue lo
accounts for the 18% of the total power consumption. Th
percentage is even higher than the consumption of caches, wh
accounted just for 15% of the total.

To address this problem, various techniques have be
proposed. These techniques attempt to partition the cen
instruction window by means of a clustered architecture where
partition is performed by either considering each instruction in tu
[3] or managing larger instruction units such as trace cache lin
[18] or loop iterations [13]. Another approach is to rely on th
compiler to take this decision, VLIW [8] architectures are a
example of that.

We take a different approach in this work to tackle thi
problem. This approach is based on the observed properties
typical dynamic instruction streams. We first note that a va
majority of the register values generated by a program are read
most once. For instance, only about one out of four valu
generated by the Spec95 benchmarks is read more than once
This feature suggests that the wake-up function could
implemented through a simple table that is indexed by the regis
identifier, avoiding the associative search. The second observa
is that the latencies of most instructions are known (except for t
memory unit) and thus the time when a source operand will
available can be deterministically determined in most cases. T
suggests a issue logic that schedules instructions based on
availability time of their operands.

We present different implementations of the issue logic bas
on the above two concepts and show that these schemes
significantly reduce the issue logic complexity with a minor impa
on the IPC rate.

This paper is organized as follows. Sections 2 and 3 pres
alternative issue logic schemes. Section 4 analyzes the performa
of these schemes and Section 5 reviews the related work. Fina
Section 6 summarizes the main conclusions of this work.

Dispatch

 I-bufferReady queue

N-use table

Figure 1: N-use issue logic design

Phy. Reg

e.
is a
eir
the
ue
nd
N
le.
x

hen
an
nto
try
er
ch
is:

al
n

is
’s
ce
ot

ed
me
int
is
2. N-USE ISSUE SCHEME

The N-use schemeis designed upon the observation that most
register values are read very few times. For instance, only 22% of
the values generated by the SpecInt95 and 25% of the FP register
values produced by SpecFP95 are read more than once [5]. The N-
use issue scheme is based on a table (we refer to it as N-use table)
that, for each physical register, stores the first N instructions that
read it in sequential order. We refer to the parameter N as the
associativity degree of the issue logic. The scheme works as
follows.

After being decoded, each instruction is dispatched in a
different way depending on the availability of its source operands:

a) If all its operands are available, it is dispatched to a queue
of ready instructions.

b) If for each non-ready source operands there is a free slot
in the N-use table in the corresponding operand, the
instruction is dispatched to the table entries corresponding
to the non-ready operands.

c) If for any of the non-ready source operands there is not a
free slot in the N-use table entry corresponding to the
source operand, the dispatch of instructions is stalled until
the operand becomes ready. Alternatively, the issue logic
can be extended with an instruction queue where such
instructions are dispatched either in-order or out-of-order.
This queue could be small since it is used by few
instructions.

Figure 1 shows a block diagram of the N-use issue schem
This scheme consists of two main hardware parts. The first one
ready queue, which contains instructions that have all th
operands available. This queue issues the instructions to
functional units in-order. Instructions are dispatched to this que
if they meet the conditions in the above paragraph (a). The seco
component (N-use table) is a table that contains the first
instructions that read each physical register that is not availab
The table will have N times the number of physical registers (N
#Physical Regs). Instructions are dispatched to this queue w
they meet the conditions in the above paragraph (b). Since
instruction can have up to two source registers, it can be stored i
two different entries, if both operands are not available. Each en
of the N-use table has an additional field that may point to anoth
entry of the table. When an instruction is placed in two entries, ea
entry’s pointer is set to point to the other entry. The pointer size

.

When the execution of an instruction completes, its physic
register identifier is used to index the N-use table. If an instructio
is found in the corresponding entry, then the pointer field
analyzed. If it does not point to any other entry (i.e., the pointer
value is NIL), the instruction is forwarded to the ready queue, sin
this indicates that this register was the only one that was n
available for that instruction. Otherwise, the pointer’s value is us
to access the other entry of the N-use table where the sa
instruction resides, and the pointer of that other entry is set to po
to NIL. When the physical register corresponding to the entry

N(2log # Physical Regs×)

Dispatch

 I-buffer

Ready queue

N-use table

LD P2, 0(P5)

LD P1, 0(P4)

ADD P3,P1,P2

ADD P3,P1,P2

ST 0(P6), P3 NIL

Figure 2: Example of the 2-use scheme

Code after renaming:
LD P1, 0(P4)
LD P2, 0(P5)
ADD P3, P1, P2
MUL P10, P1, P3
ST 0(P6), P3

Sample code:
LD R1, 0(R4)
LD R2, 0(R5)
ADD R3, R1, R2
MUL R10,R1,R3
ST 0(R6), R3

P2:

P3:

P1:

. . .

MUL P10,P1,P3

MUL P10,P1,P3

DD
ave
use
the
ach
is
this
N-
the
ond
se

ly

nd
ce
e
e
its
IL,
dy

e
ill

B
e
N-
to
has
nd
available, the instruction will be forwarded to the ready queue since
the pointer that the processor will find when it accesses this entry
will be NIL. Alternatively, the pointers could be eliminated if the
N-use table would keep just the instructions with one (and only
one) source operand which is in the first N-uses of that value. The
difference with the previous scheme is that the instructions that
have two source registers and both are in the first N-uses would
now be sent to the I-buffer. Nevertheless, this alternative is beyond
the scope of this work and its evaluation is currently on its way.

In the basic N-use scheme described above, if a decoded
instruction has a source operand that is not ready and it does not
correspond to the first N uses of such value, the decode and
dispatch of instructions is stalled until this operand becomes ready.
Then, it is dispatched to the ready queue. Alternatively, the basic
scheme could be extended for increased performance with an extra
buffer (I- buffer) shown in Figure 1. Basically, it consists of a buffer
(I-buffer) where the instructions that have non-ready operands that
are not in the first N uses of them are dispatched. The instructions
from this I-buffer are issued to the functional units when their
operands are available. We have investigated two different
organizations for the I-buffer, with very different hardware cost and
complexity: in-order and an out-of-order issue policies.

Note that both the basic scheme and the extended scheme
where the I-buffer uses an in-order issue policy do not require any
associative search for the issue logic, which is a significant
simplification with respect to a conventional out-of-order issue
mechanism.

In Figure 2, we can see an example of the use of the 2-use
scheme for a sample code. We assume that all five instructions can
be dispatched in the current cycle and that P4, P5 and P6 are
available at this cycle. Since the two loads have their operands

ready they are sent to the Ready queue. When dispatching the A
instruction, the processor detects that this operation does not h
their operands ready and that they both correspond to the first
of them. Thus, this instruction is steered to the N-use table into
entries corresponding to its source registers. Furthermore, e
entry is made to point to the other one. As far as the multiply
concerned, it is the first use of P3 and the second of P1. Since
implementation allows 2 instructions (uses) per register in the
use table this instruction is kept in the 2-use table. Regarding
store instruction, the operand P3 is not available and it is the sec
use of P3, thus the instruction is stored in the corresponding N-u
table entry. The pointer is set to NIL since P3 is the on
unavailable operand.

Let us suppose that the first load finishes before the seco
one. At that time, the entry P1 of the N-use table is checked. Sin
it has an instruction and its pointer is not NIL, the pointer of th
pointed entry (i.e. the pointer of entry P2) is set to NIL. When th
second load finishes, since the entry corresponding to
destination register (P2) has an instruction and its pointer is N
the ADD instruction is forwarded from the N-use table to the Rea
queue.

In order to handle instruction squashing, for example in th
case of a branch miss-prediction, each entry in the N-use table w
hold a tag that indicates the position of that instruction in the RO
(ReOrder Buffer). When flushing the instructions, the tag of th
misspredicted branch is sent to the N-use table. If an entry of the
Use table holds an instruction, the tag of that will be compared
the one of the misspredicted branch. In case that the instruction
been fetched after the branch that entry will be set to invalid a
thus squashed.

Dispatch

Delayed-
Issue queue

Issue queue

Register
availability
table

Figure 3: Deterministic Latency issue logic

head

Phy. Reg

ast
e

ycle

he
he
a

on
cle.
ill

ences
ns
le:
and
the
on

will
ted
e

ent
irst

me
s
al
led
ity

y
d to
y

3. DETERMINISTIC LATENCY SCHEME

Another approach to the issuing logic is based on the fact that the
latency of most instructions is known when they are decoded. Thus,
we could dynamically schedule the instructions following a similar
approach to that implemented by a static scheduler. In other words,
the order in which instructions will be executed is determined at the
decode stage. The only problem this scheme has to face is the
varying latency of the memory accesses. There are two main
approaches when considering memory accesses. The first one is to
assume that the latency is not known and thus, any instruction
depending on a memory access will have to wait to be scheduled till
the latency of the access is known. The second alternative is to
assume that memory accesses have a deterministic latency and thus,
the instructions depending on the memory access will be scheduled
according to the assumed latency. Nevertheless, the issue will be
stalled when the instruction depending on the memory access has to
issue and the memory access has not finished yet. Alternatively,
there could be a queue where the dependant instructions are kept if
it is its expected issue time but they are not ready. The first scheme
was previously studied and was referred to asDistanceissue logic
in [4]. The second alternative is called Deterministic Latency issue
logic and will be described and evaluated in this work.

Figure 3 shows a block diagram of the Deterministic Latency
issue logic. This scheme consists of three main blocks. First, we
have a table where for each physical register it contains the cycle
when its value will be produced. This table is called the register-
availability table.

The second block is the Delayed Issue queue, which holds the
instructions that were scheduled to be issued too early, before their
operands were ready. This queue has a complexity similar to a
traditional instruction issue queue since every time an instruction

finishes its execution, its physical destination register is broadc
to all entries of this queue. Any entry with a matching sourc
operand takes note of its readiness and will be issued the next c
that there is an available issue slot.

The third block is the Issue queue. For each instruction in t
queue, this block contains information regarding the cycle when t
instruction will be issued. Conceptually, it can be regarded as
circular buffer where for each entry there are as many instructi
slots as the issue width and each entry corresponds to one cy
Thus, this queue contains the instructions in the order that they w
be executed and separated by a distance that ensures that dep
will be obeyed if at every cycle the processor issues the instructio
in the head entry. Thus, the issue logic for this queue is very simp
at each cycle the instructions in the head of the queue are issued
the head pointer is increased by one. In Section 4 the depth of
Issue queue is empirically determined. Instructions are placed
the issue queue only when the time when its source operands
be available is known. The location in the issue queue is compu
as follows. First, the maximum of the availability time of its sourc
operands (MaxSource) is calculated and then, the difference
between this value and the current cycle indicates the displacem
in respect to the head pointer. The instruction is placed on the f
free slot starting at that cycle.

Once an instruction is placed on the issue queue, the ti
when its output register will be available is computed a
MaxSource plus the latency of the instruction plus the addition
delay due to conflicts in the issue queue with previously schedu
instructions. This value is used to update the register availabil
table.

Loads from memory are handled in the following way. The
are dispatched as any other instruction and they are assume
have the latency of a hit in the first level cache (alternatively, the

out
er
n in-

der
er
de
atch
p of
er
the
m
ue

of-
e

C
the
ost
en

he
he
e
r,
could have the latency of a second level cache hit). Instructions that
depend on the load read the output time and will be scheduled
according to it. Nevertheless, it can happen that an instruction
depending on a memory access is not ready to execute when it is at
the head of the issue queue since the memory access has not
finished. For example, an instruction depending on a load may
assume that the memory value will be available 1 cycle after the
load’s issue. If the load misses in the first level cache, the data will
not be there at that time so the instruction will have to be taken apart
(kept in the delayed-issue queue) or the issue will have to be stalled.
In this paper, we assume the first alternative and investigate the
trade-off between the size of the delayed issue queue and
performance.

In this mechanism, it is assumed that loads are completed in a
certain latency so the instructions depending on the values
produced by loads will be scheduled according to the latency
assigned to the memory accesses. Please, note that since stores do
not produce any output register the scheduling is no affected by the
store latency.

Instructions are issued first from the delayed queue, and then
from the Issue queue. Any instruction that cannot be issued from
the Issue queue head, either because it was depending on a load and
it has not finished or because the instructions of the Delayed queue
took its issue slot or functional unit, will be kept in the Delayed
queue. If the Delayed queue is full and there are some instructions
in the Issue queue that should move into the Delayed queue, the
issue will be stalled till the “delayed” instructions fit in the Delayed
Issue queue.

The technique used for instruction squashing is similar to that
presented for the N-Use scheme in Section 2. In this case, the tags
will be held in the Issue queue. No work needs to be done in the
Register-Availability Table since during the squashing the physical
registers will be deallocated (and thus not referenced). Next time
the physical register is assigned (as an output register of a new
operation) the availability time will be set by the new instruction.

4. PERFORMANCE EVALUATION

4.1. Experimental Framework

We have used a cycle-level timing simulator based on the
SimpleScalar tool set [2] for performance evaluation. We extended
the simulator to include register renaming through a physical
register file and the issue mechanisms described in Section 2 and
Section 3. See Table 1 for the main architectural parameters of the
machine. We used the programs from the Spec95 suite with their
reference inputs to conduct our evaluation. All the benchmarks
were compiled with the Compaq-Alpha C compiler with the -O5
optimization flag. For each integer benchmark, 100 million
instructions were run after skipping the first 100 million. For the FP
programs, 100 million instructions were run after skipping the first
300 million. Performance results are reported as the harmonic mean
for the whole benchmark suite. We have simulated four issue
schemes: a conventional out-of-order scheme with a 64-entry
instruction window, an in-order scheme, the N-use scheme (for
several values of N) and the Deterministic Latency scheme
(assuming that the latencies of the loads are either hit time in first
level cache or hit time in second level cache). The next subsections
present performance figures for all these schemes.

4.2. N-Use Scheme

Figure 4 shows the IPC of the basic N-use mechanism (i.e. with
an I-buffer) in comparison to an in-order issue and an out-of-ord
issue. We can see that the 1-use scheme performs better than a
order issue mechanism but significantly worse than an out-of-or
issue scheme. Actually, what happens is that the out-of-ord
scheme can find instructions ready to execute further in the co
sequence than the N-use scheme since the latter stalls the disp
much more frequently. The 1-use scheme achieves and speed-u
38% over the in-order scheme but it slows down the out-of-ord
machine by a 40%. For bigger associativities of the N-use table,
performance is very close to that of an out-of-order mechanis
since with this configuration the issue is stalled less frequently d
to the bigger capacity of the N-use table.

When the N-use scheme is extended with a a small out-
order I-buffer (see Figure 1) the performance of this schem
significantly increases. Figure 5 shows the evolution of the IP
when the size of the I-buffer varies. We can see that for sizes of
I-buffer of 8 elements or more, the N-use scheme performs alm
at the same level as the out-of-order issue mechanism. Wh
reducing the I-buffer size further, the overall effect depends on t
associativity of the N-use table. The higher the associativity t
minor the effect of the smaller I-buffer. For a 4-entry I-buffer, th
performance degradation is very low whereas without a I-buffe

Table 1: Machine parameters (split into the integer datapath
and the FP datapath if not common)

Parameter Configuration

Fetch width 8 instructions

I-cache 64KB, 2-way set-associative. 32-byte lines, 1-
cycle hit time, 6-cycle miss penalty

Branch Predictor

Combined predictor of 1K entries with a
Gshare with 64K 2-bit counters, 16 bit global
history, and a bimodal predictor of 2K entries

with 2-bit counters.
Br. miss-prediction penalty: 3 cycles

Decode/Rename
width 8 instructions

Max. in-flight
instructions 64

Retire width 8 instructions

Functional units
(latencies)

3 intALU (1) + 1 int
mul/div (2, 14)

3 fpALU (2) + 1 fp
mul/div (6,12)

Issue mechanism

4 instructions 4 instructions

Depends on the mechanism studied
Loads may execute when prior store

addresses are known

Physical registers 96 96

D-cache L1
64KB, 2-way set-associative. 32-byte lines, 1-

cycle hit time, 6-cycle miss penalty

3 R/W ports

I/D-cache L2

256 KB, 4-way set associative, 64-byte lines,
6-cycle hit time.

16 bytes bus bandwidth to main memory, 16
cycles first chunk, 2 cycles interchunk.

er
of
me
ty
ut

e
re
ry
der
sic
e it
can

der
6,
%

y
8
ue
the
ize
ery

ycles)
the degradation varies from 32% to 2.5% depending on the
associativity. .

In particular, the 2-use scheme with a 2-entry I-buffer
achieves an IPC comparable (~4% slow-down) to that of an out-of-
order scheme and it reduces the associative look-up from 64 to 2
entries (32 times smaller). This restricted associative search will
certainly result in a shorter issue delay which may in turn influence
the clock-cycle time.

Alternatively, we could get rid of any associative search logic
by implementing an in-order issue for instructions in the I-buffer.
The performance of this alternative is shown in Figure 6.

We can see in Figure 6 that this scheme implies a decrease in
IPC with respect to the out-of-order I-buffer configuration (see
Figure 5) for the 1-use scheme whereas it is rather low for higher
degrees of associativity. It is interesting to analyze the impact of the
size of the in-order I-buffer on performance. A bigger I-buffer
reduces the stalls in the dispatch. However, since instructions from
the I-buffer are issued in order, once an instruction is placed on this
buffer it must wait until all previous instructions have been issued.
However, sometimes it is better to stall the dispatch for a few cycles
and then issue the instruction to the N-use table, from where it can
issue out of order. This trade-off explains why the IPC increases
when the I-buffer size increases, but beyond a certain size (8
entries), the benefits of a larger I-buffer are more than offset by its
drawbacks, which results in a decrease in performance. This effect

is minimized by the associativity of the N-use table. For small
values of N the effect is more visible. Overall, the performance
the N-use scheme is quite close to that of an out-of-order sche
for a small I-buffer or associativities higher than 1. For associativi
1 and a large I-buffer the performance is somewhat lower (abo
12% lower on average).

4.3. Deterministic Latency Scheme

Figure 7 shows the IPC of a basic implementation of th
Deterministic Latency scheme when memory instructions a
scheduled assuming a 1-cycle -DL1- and 6-cycle -DL6- memo
access latency. An in-order issue approach and an out-of-or
issue mechanism are also shown for comparison. This ba
implementation does not require any associative search sinc
assumes a zero-entry Delayed Issue queue (see Figure 3). We
see that the DL mechanism performs much better than an in-or
machine (65% and 84% speed-up for the DL1 and DL
respectively) and not very far from an out-of-order machine (10
slow-down for the DL6).

When a full implementation of the Deterministic Latenc
scheme is considered, the IPC is significantly improved. Figure
shows the evolution of the IPC when the size of the Delayed que
varies. The size of the queue hardly affects the performance of
DL6 scheme. Although the performance grows up when the s
increases, there is a point where the extra cycles spent for ev
access (this scheme assumes that memory accesses take 6 c

In-order
1-Use

2-Use
4-Use

8-use

Out-of-o
rder

Type of Issue Logic

0.75
0.85
0.95
1.05
1.15
1.25
1.35
1.45
1.55
1.65
1.75
1.85
1.95
2.05
2.15
2.25
2.35
2.45
2.55
2.65

IP
C

 (
h-

m
ea

n)

SpecInt 95
SpecFP 95
Avg. (H-mean)

Figure 4: Performance of the N-use scheme (without I-
buffer)

64 32 16 8 4 2 0

#instr. in I-buffer

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

IP
C

 (
H

-m
ea

n
Sp

ec
)

8-use
4-use
2-use
1-use
Out-of-order (64 entry queue)
In-order

Figure 5: Evolution of the IPC for the N-use scheme for
different I-buffer sizes with an out-of-order I-
buffer

Figure 6: Performance of the N-use scheme for different in-
order queue sizes of an in-order I-buffer

64 32 16 8 4 2 0

#instr. in I-buffer

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

IP
C

 (
H

-m
ea

n
Sp

ec
)

8-use (in-order)
4-use (in-order)
2-use (in-order)
1-use (in-order)
Out-of-order (64 entry queue)
In-order

In-order
DL 1

DL 6

Out-of-o
rder

Type of Issue Logic

0.75
0.85
0.95
1.05
1.15
1.25
1.35
1.45
1.55
1.65
1.75
1.85
1.95
2.05
2.15
2.25
2.35
2.45
2.55
2.65

IP
C

 (
h-

m
ea

n)

SpecInt 95
SpecFP 95
Avg. (H-mean)

Figure 7: Performance of the basic Deterministic Latency
scheme (without a Delayed Issue queue)

me
I-

an
ce

the
In

IFO

e
is

re
is

in
cy
the

ero
1

O
gic
er
er of
by
e
the
re
the
FO
pty

tic
IFO

he
een

one
limit the maximum performance achievable. As far as the DL1 is
concerned, we can see that with 64 to 16 elements in the associative
part of the mechanism (Delayed Issue queue) the scheme performs
almost at the same level (~4% slow-down) as the out-of-order
approach. For smaller sizes, the performance goes down
significantly.

We have empirically determined that the maximum depth that
the Issue queue of the Deterministic Latency scheme requires in
order not to cause any stall is 60 entries of 4 instructions each and,
on average, it is around 18 entries for the Spec benchmarks for the
1-cycle memory access latency configuration. Note also that for
integer codes the size of the Issue queue is smaller due to the shorter
latencies of the functional units. Studying the effect of a limited
Issue queue is beyond the scope of this work.

4.4. N-Use vs. Latency

Figure 9 shows the performance of both the N-use and the
Deterministic Latency schemes when varying the size of the
associative hardware. We can see that when there is no associative
buffer, the Deterministic Latency scheme and the 4-Use scheme
perform at the same level. Besides if a small associative buffer (2 or
4 entries) is feasible, the N-use scheme performs better. And, in this
case, the performance achieved is very close to that of an out-of-
order mechanism.

Thus, we can conclude that if we can afford a small associative
buffer (around 2-4 entries), the N-use scheme is very competitive in
terms of IPC when compared to a fully out-of-order mechanism and
it has the potential advantage of reducing the cycle time. If we want
to completely avoid any associative search, both the Deterministic

Latency scheme without the Delayed queue and the N-Use sche
with a moderate associativity in the N-use table with an in-order
buffer have about the same IPC, which is significantly higher th
that of an in-order scheme (~84%) and not far from the performan
of an out-of-order mechanism (~10%).

4.5. Comparison with the FIFO-Based Scheme

In this Section, we will compare the proposed mechanisms to
FIFO-based scheme proposed by Palacharla et al. [17].
Palacharla’s scheme instructions are dispatched to several F
queues depending on the following facts:

d) If the last instruction of a queue produces one of th
registers of the instruction being dispatched, th
instructions is sent to that queue.

e) Otherwise it is sent to an empty FIFO queue. If there a
no queues available, the dispatch is stalled until th
instruction has an empty FIFO.

Figure 10 shows the performance of the FIFO scheme
comparison to the N-use scheme and the Deterministic Laten
scheme. For the FIFO-based scheme, the X-axis corresponds to
number of FIFO queues (note that the zero position, means z
entries in the extra buffer for the DL and N-use schemes and
single FIFO for the FIFO-based mechanism). The number of FIF
queues determines the degree of associativity of the issue lo
since instructions of different queues are issued in any ord
whereas those in the same queue are issued in-order. The numb
entries in the FIFO queues for each configuration is determined
the number of entries in the instruction window (64) divided by th
number of queues. We can see that the performance of all
schemes is similar for a degree of associativity of 16 or mo
(except for the Deterministic Latency that assumes 6 cycles for
memory accesses). When reducing the associativity the FI
scheme reduces dramatically its performance due to lack of em
FIFO queues when dispatching.

In conclusion, the N-use scheme and the Determinis
Latency scheme have a much better performance than the F
based for low degrees of associativity.

5. RELATED WORK

In our previous work on issue logic designs [4], we proposed t
First-Use scheme and the Distance scheme. The former has b
extended so that the First-use table now can hold more than

64 32 16 8 4 2 0

#Delayed-Issue queue entries

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

IP
C

 (
H

-m
ea

n
Sp

ec
)

DL1
DL6
Out-of-order (64 entry queue)
In-order

Figure 8: Performance of the Deterministic Latency
scheme for different Delayed Issue queue sizes

64 32 16 8 4 2 0

#instr. in associative buffer

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

IP
C

 (
H

-m
ea

n
Sp

ec
)

DL1
DL6
4-use
2-use
1-use
Out-of-order (64 entry queue)
In-order

Figure 9: Performance of the two proposed schemes

Figure 10: Performance of the FIFO scheme together with
the N-use and the Deterministic Latency

64 32 16 8 4 2 0

#instr. in associative buffer

0.75
0.85
0.95
1.05
1.15
1.25
1.35
1.45
1.55
1.65
1.75
1.85
1.95
2.05
2.15
2.25
2.35
2.45

IP
C

 (
H

-m
ea

n
Sp

ec
)

DL1
DL6
4-use
2-use
FIFO-based
Out-of-order (64 entry queue)
In-order

in
for

PC
an
his
the
zed
es
ric
ks

in
nd
its
e
ch

ny
out-
ble
ble
the
e

ery
it

ries.

ion
ya
ip
he
on
d

n,

er

.

instruction (the N-use table in this work). This significantly
improves the performance of the scheme for low sizes of the I-
buffer, as shown in the previous section. The Distance scheme is the
complementary of the Deterministic Latency scheme. In that case,
the memory access latency is assumed unknown (indeterministic)
so all the instructions depending on a memory access are kept apart
and are not placed into the Issue queue till the availability time of
the data is known (in other words, when the load performs its
writeback the availability time is updated). In the distance scheme
there is no delayed-issue queue but needs a wait queue to keep the
instructions whose operand’s availability time is not known. That
scheme performs lower than the Deterministic Latency schemes
proposed in this work.

Michaud et al. [15] presented a prescheduling technique
similar in concept to that presented in our previous work [4] and to
the Deterministic Latency scheme in this work. In their case, they
did not work directly on the issue logic but on preparing
(prescheduling) the instruction for that stage. A deeper pipeline was
used and thus more complex sturctures could be used.

Henry et al. [11] presented several circuit-level techniques for
reducing the complexity of the issue logic. Their approach is
orthogonal to ours and thus both could combine nicely.

S. Weiss and J.E. Smith [25] designed an issue logic similar to
the basic 1-Use mechanism with no associativity explained in
Section 2. In their work, they did not implement an I-queue and the
first use check was done through a tag mechanism. We have shown
that the mechanism suffers significant performance degradation
when the I-buffer is not present.

S. Palacharla and J.E. Smith [17] presented an approach based
on implementing the instruction queue through several FIFOs so
that just the heads of the FIFOs need to be considered for issuing.
In the previous section we have evaluated the performance of this
scheme for different configurations and compared it to the
mechanisms proposed in this work. We have showed that for a
small degree of associativity (number of FIFOs), this mechanism
reduces performance dramatically whereas for larger associativities
its performance is similar to the schemes proposed in this work.

S. Öner and R. Gupta [16] proposed a mechanism which tried
to chain the instructions according to the dependences among them.
This scheme, builds the data dependence graph dynamically and
limits the number of instructions that each instruction can wake up.
In their study they assumed that all the FUs latencies are known and
not variable, which simplifies the issue logic.

The most common approach to reduce the complexity of the
issue logic is to take advantage of a VLIW architecture [8]. In this
case the scheduling is done at compile time. This is the approach
that reduces most the issue logic complexity but, on the other hand,
it is not as flexible as a dynamic scheme since not all the
information is available at compile time (e.g. memory access
latencies).

More general approaches to reduce the complexity of the issue
logic and, in general, of the microarchitecture are clustering and
multithreading. These approaches try to reduce the complexity of
the issue logic by partitioning it into several parts. The cluster
approach [3, 6, 12, 17] partitions the datapath whereas in the
multithreading approach [23, 26], each thread may have its own
issue logic. Both architectural approaches are orthogonal with the
research conducted in this work and both could combine nicely.

6. CONCLUSIONS

Out-of-order issue is a key component for high-performance
non-numeric applications. For instance, we have observed that
the SpecInt95, an out-of-order implementation achieves an I
(instruction committed per cycle) that is about 2.5 times higher th
that of a similar processor with an in-order issue scheme. T
difference could be reduced by a compiler that was aware of
underlying in-order issue scheme and generated a more optimi
code for this case, but we may still expect significant differenc
since the performance of instruction scheduling for non-nume
codes is significantly constrained by the small size of basic bloc
and the large percentage of ambiguous memory references.

However, implementing an fully out-of-order issue scheme
the way that current microprocessors do, is very complex a
energy-demanding, which poses significant constraints to
scalability. In this paper we have proposed alternativ
implementations of an out-of-order issue scheme that are mu
simpler and retain most, if not all, the ability of the fully out-of-
order mechanism to exploit instruction-level parallelism.

In particular, the N-use scheme does not require a
associative search and provides a performance very close the
of-order scheme for N equal to 4. The cost of this scheme is a ta
with as many entries as number of physical registers but this ta
does not require any associative search, i.e., it is indexed by
operand register identifiers). Another alternative is th
Deterministic Latency scheme that provides a performance v
close to the out-of-order processor and at the same time
constraints the associative searches to a small queue of 8-16 ent

7. ACKNOWLEDGEMENTS

This work has been supported by the Spanish Ministry of Educat
under grant CICYT TIC98-0511, the Generalitat de Catalun
under grant 2001TDOC00049 and the IBM University Partnersh
Award. This work has been done using the resources of t
European Center of Parallelism in Barcelona (CEPBA). Ram
Canal would like to thank his fellow PBC’s for their patience an
precious help.

8. REFERENCES

[1] M.T. Bohr. Interconnect Scaling - The Real Limiter to
High Performance VLSI.Proc. of the 1995 IEEE Int.
Electron Devices Meeting, pp. 241-244, 1995.

[2] D. Burger, T.M. Austin, S. Bennett. Evaluating Future
Microprocessors: The SimpleScalar Tool Set.Technical
Report CS-TR-96-1308, University of Wisconsin-Madiso
1996.

[3] R. Canal, J.M. Parcerisa, A. González. Dynamic Clust
Assignment Mechanisms.Proc. of the 6th Int. Symp. on
High-Performance Computer Arch.,Toulouse, 2000, pp.
133-142.

[4] R. Canal, A. González. A Low-Complexity Issue Logic
Proc. of the 2000 International Conference on
Supercomputing . Santa Fe (NM-USA).May, 2000, pp.
327-335.

ic

y-

ace

l

f
2,

r
r

s

d
-

r

e

e,
[5] J.Ll. Cruz, A. González, M. Valero, N. Topham. Multiple-
Banked Register File Architectures.Proc. of the 27th Int’l
Symp. on Computer Architecture, June 2000,pp.316-324.

[6] K.I.Farkas, P.Chow, N.P.Jouppi, Z.Vranesic. The
Multicluster Architecture: Reducing Cycle Time Through
Partitioning. Proc of the 30th. Ann. Symp. on
Microarchitecture, December 1997, pp149-159

[7] D. Folegnani, A. Gonzalez. Reducing Power Consumption
of the Issue Logic.Workshop on Complexity-Effective
Design, Vancouver, June 2000.

[8] J.A. Fisher. Very Long Instruction Word and ELI-512.
Proc. of the 10th Int. Symp. on Computer Architecture,
Stockholm, Sweden, June 1983, pp. 140-150.

[9] M. Franklin. The Multiscalar Architecture.Ph.D. Thesis,
Technical Report TR 1196, Computer Sciences
Department, Univ. of Wisconsin-Madison, 1993.

[10] M.K. Gowan, L.L. Biro, D.B. Jackson. Power
Considerations in the Design of the Alpha 21264
Microprocessor.Proc. of the 35th ACM/IEEE conference
on Design Automation Conference (DAC 98), San
Francisco (CA-USA), 1998, pp. 726-731

[11] D.S.Henry, D.C.Kuszmaul, G.H.Loh, R.Sami. Circuits for
Wide-Window Superscalar Processors.Proc. of the 27th
Int. Symp. on Computer Architecture, Vancouver, Canada,
June 2000, pp. 236-247.

[12] G.A.Kemp, M.Franklin. PEWs: A Decentralized Dynamic
Scheduler for ILP Processing.Proc. of the Int. Conf. on
Parallel Processing. 1996, v.1, pp 239-246.

[13] P. Marcuello, A. Gonzálex, J. Tubella. Speculative
Multithreaded Processors.Proc. of the Int. Conf. on
Supercomputing, pp. 77-84, July 1998.

[14] D.Matzke. Will Physical Scalability Sabotage Performance
Gains. IEEE Computer Vol. 30, num. 9, pp.37-39,
September 1997.

[15] P. Michaud, A. Seznec. Data-Flow Prescheduling for Large
Instruction Windows in Out-of-Order Processors.Proc. of
the 7th Int. Symp. on High-Performance Computer
Architecture, Monterrey, Mexico, 2001, pp. 27-36.

[16] S. Önder, R. Gipta. Superscalar Execution with Dynam
Data Forwarding. Proc. Int. Conference on Parallel
Architectures and Compilation Techniques, pp. 130-135,
1998.

[17] S. Palacharla, N.P. Jouppi, J.E. Smith. Complexit
Effective Superscalar Processors.Proc of the 24th. Int.
Symp. on Comp. Architecture, 1997, pp 1-13.

[18] E.Rotenberg, Q.Jacobson, Y.Sazeides and J.E.Smith. Tr
Processors. Proc of the 30th. Ann. Symp. on
Microarchitecture, 1997.

[19] Semiconductor Industry Association. The Nationa
Technology Roadmap for Semiconductors. 1997.

[20] J.E. Smith, G.S. Sohi. The Mircoarchitecture o
Superscalar Processors. Proc. of the IEE, vol. 83, no. 1
december 1995, pp. 1609-1624.

[21] G.S.Sohi, S.E.Breach, T.N.Vijaykumar. Multiscala
Processors.Proc. of the 22nd Int. Symp. on Compute
Architecture. 1995, pp 414-425.

[22] R.M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units.IBM Journal of Research and
Development vol 11, pp 25-33, 1967.

[23] D.M. Tullsen, S.J. Eggers, H.M.Levy. Simultaneou
Multithreading: Maximizing On-Chip Parallelism.Proc. of
the Int. Symp. on Computer Architecture, pp. 392-403,
1995.

[24] D.W. Wall. Limits of Instruction-Level Parallelism.
Techincal Report WRL 93/6, Digital Western Research
Lab, 1993.

[25] S. Weiss, J.E.Smith. Instruction Issue Logic in Pipeline
Supercomputers.IEEE transactions on computers, vol. c
33, no.11, pp 1013-1022, November 1984.

[26] W. Yamamoto, M. Nemirovsky. Increasing superscala
performance through multistreaming.Proc. of the Int.
Conf. on Parallel Architectures and Compilation
Techniques, pp. 49-58, 1995

[27] V.V. Zyuban. Inherently Lower-Power High-Performanc
Supersalar Architectures.PhD. Thesis, Dept. of Computer
Science and Engineering, University of Notre Dam
(Indiana), January 2000.

	ABSTRACT
	1. INTRODUCTION
	2. N-USE ISSUE SCHEME
	a) If all its operands are available, it is dispatched to a queue of ready instructions.
	b) If for each non-ready source operands there is a free slot in the N-use table in the correspon...
	c) If for any of the non-ready source operands there is not a free slot in the N-use table entry ...

	3. DETERMINISTIC LATENCY SCHEME
	4. PERFORMANCE EVALUATION
	4.1. Experimental Framework
	Table 1: Machine parameters (split into the integer datapath and the FP datapath if not common)

	4.2. N-Use Scheme
	Figure 4: Performance of the N-use scheme (without I- buffer)
	Figure 5: Evolution of the IPC for the N-use scheme for different I-buffer sizes with an out-of-o...

	4.3. Deterministic Latency Scheme
	Figure 6: Performance of the N-use scheme for different in- order queue sizes of an in-order I-bu...
	Figure 7: Performance of the basic Deterministic Latency scheme (without a Delayed Issue queue)
	Figure 8: Performance of the Deterministic Latency scheme for different Delayed Issue queue sizes

	4.4. N-Use vs. Latency
	Figure 9: Performance of the two proposed schemes

	4.5. Comparison with the FIFO-Based Scheme
	d) If the last instruction of a queue produces one of the registers of the instruction being disp...
	e) Otherwise it is sent to an empty FIFO queue. If there are no queues available, the dispatch is...
	Figure 10: Performance of the FIFO scheme together with the N-use and the Deterministic Latency

	5. RELATED WORK
	6. CONCLUSIONS
	7. ACKNOWLEDGEMENTS
	8. REFERENCES
	[1] M.T. Bohr. Interconnect Scaling - The Real Limiter to High Performance VLSI. Proc. of the 199...
	[2] D. Burger, T.M. Austin, S. Bennett. Evaluating Future Microprocessors: The SimpleScalar Tool ...
	[3] R. Canal, J.M. Parcerisa, A. González. Dynamic Cluster Assignment Mechanisms. Proc. of the 6t...
	[4] R. Canal, A. González. A Low-Complexity Issue Logic. Proc. of the 2000 International Conferen...
	[5] J.Ll. Cruz, A. González, M. Valero, N. Topham. Multiple- Banked Register File Architectures. ...
	[6] K.I.Farkas, P.Chow, N.P.Jouppi, Z.Vranesic. The Multicluster Architecture: Reducing Cycle Tim...
	[7] D. Folegnani, A. Gonzalez. Reducing Power Consumption of the Issue Logic. Workshop on Complex...
	[8] J.A. Fisher. Very Long Instruction Word and ELI-512. Proc. of the 10th Int. Symp. on Computer...
	[9] M. Franklin. The Multiscalar Architecture. Ph.D. Thesis, Technical Report TR 1196, Computer S...
	[10] M.K. Gowan, L.L. Biro, D.B. Jackson. Power Considerations in the Design of the Alpha 21264 M...
	[11] D.S.Henry, D.C.Kuszmaul, G.H.Loh, R.Sami. Circuits for Wide-Window Superscalar Processors. P...
	[12] G.A.Kemp, M.Franklin. PEWs: A Decentralized Dynamic Scheduler for ILP Processing. Proc. of t...
	[13] P. Marcuello, A. Gonzálex, J. Tubella. Speculative Multithreaded Processors. Proc. of the In...
	[14] D.Matzke. Will Physical Scalability Sabotage Performance Gains. IEEE Computer Vol. 30, num. ...
	[15] P. Michaud, A. Seznec. Data-Flow Prescheduling for Large Instruction Windows in Out-of-Order...
	[16] S. Önder, R. Gipta. Superscalar Execution with Dynamic Data Forwarding. Proc. Int. Conferenc...
	[17] S. Palacharla, N.P. Jouppi, J.E. Smith. Complexity- Effective Superscalar Processors. Proc o...
	[18] E.Rotenberg, Q.Jacobson, Y.Sazeides and J.E.Smith. Trace Processors. Proc of the 30th. Ann. ...
	[19] Semiconductor Industry Association. The National Technology Roadmap for Semiconductors. 1997.
	[20] J.E. Smith, G.S. Sohi. The Mircoarchitecture of Superscalar Processors. Proc. of the IEE, vo...
	[21] G.S.Sohi, S.E.Breach, T.N.Vijaykumar. Multiscalar Processors. Proc. of the 22nd Int. Symp. o...
	[22] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM Journal ...
	[23] D.M. Tullsen, S.J. Eggers, H.M.Levy. Simultaneous Multithreading: Maximizing On-Chip Paralle...
	[24] D.W. Wall. Limits of Instruction-Level Parallelism. Techincal Report WRL 93/6, Digital Weste...
	[25] S. Weiss, J.E.Smith. Instruction Issue Logic in Pipelined Supercomputers. IEEE transactions ...
	[26] W. Yamamoto, M. Nemirovsky. Increasing superscalar performance through multistreaming. Proc....
	[27] V.V. Zyuban. Inherently Lower-Power High-Performance Supersalar Architectures. PhD. Thesis, ...

	Reducing the Complexity of the Issue Logic
	Ramon Canal and Antonio González
	Departament d’Arquitectura de Computadors Universitat Politècnica de Catalunya Jordi Girona, 1-3 ...
	Barcelona, E-08034
	Figure 2: Example of the 2-use scheme
	Figure 3: Deterministic Latency issue logic
	Figure 1: N-use issue logic design

