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ABSTRACT
This paper presents the Distributed Cooperative Caching, a
scalable and energy-efficient scheme to manage chip multi-
processor (CMP) cache resources. The proposed configura-
tion is based in the Cooperative Caching framework [3] but
it is intended for large scale CMPs. Both centralized and
distributed configurations have the advantage of combining
the benefits of private and shared caches. In our proposal,
the Coherence Engine has been redesigned to allow its par-
titioning and thus, eliminate the size constraints imposed
by the duplication of all tags. At the same time, a global
replacement mechanism has been added to improve the us-
age of cache space. Our framework uses several Distributed
Coherence Engines spread across all the nodes to improve
scalability. The distribution permits a better balance of the
network traffic over the entire chip avoiding bottlenecks and
increasing performance for a 32-core CMP by 21% over a
traditional shared memory configuration and by 57% over
the Cooperative Caching scheme.

Furthermore, we have reduced the power consumption of
the entire system by using a different tag allocation method
and by reducing the number of tags compared on each re-
quest. For a 32-core CMP the Distributed Cooperative
Caching framework provides an average improvement of the
power/performance relation (MIPS3/W) of 3.66x over a tra-
ditional shared memory configuration and 4.30x over Coop-
erative Caching.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; C.1.4 [Processor Architectures]: Parallel Archi-
tectures—Distributed architectures

General Terms
Design, Management, Performance
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1. INTRODUCTION
Over the last few years, several chip multiprocessors have

appeared in the market. These configurations make an ef-
ficient use of the growing silicon real estate and try to take
advantage of the existing parallelism of applications. Server
and high-end applications are the most benefited from these
platforms and it is also expected that future desktop ap-
plications for recognition, mining and synthesis [8] are go-
ing to require a high number of cores. Existing roadmaps
and research trends like Intels Tera-scale [22] processor show
that the number of cores is going to increase in the future.
These architectures are going to exacerbate existing chal-
lenges such as power dissipation, wire delays and off-chip
memory bandwidth. In this environment, a power and per-
formance optimized memory hierarchy is crucial. Such con-
figuration must minimize off-chip misses by optimizing on-
chip memory usage and also reduce miss latency by placing
data close to the requester.

Cache coherence in multiprocessors has been traditionally
granted either by snoop or directory based schemes. Direc-
tory based schemes need an extra level of indirection but
have a better scalability and can provide the best config-
uration for multiprocessors with a high number of cores.
When designing the on-die L2 cache, two different alterna-
tives come up, private and shared caches.

Logically-unified shared L2 cache provides a good response
for processors with a reduced number of cores because the
global number of L2 misses is usually smaller and they make
an efficient use of the available L2 cache space. This is the
most common organization for the last-level cache due to
its simplicity and good performance [7, 19]. However, for a
higher number of cores this type of configuration generates a
bottleneck in centralized aggregate caches or produces a high
demand on the interconnection network for distributed Non
Uniform Cache Access (NUCA) architectures. The network
usage increase has three negative effects; it increases the
overall power consumption, requires a network with higher
bandwidth and increases the miss latency.

Private L2 caches, on the other hand, provide a uniform
and usually lower latency since data is stored in the local
nodes. These configurations have the additional advantage
of avoiding inter-core cache conflicts. However, since not all
threads running in the cores have the same cache require-
ments, this causes an inefficient use of L2 cache space, and



these caches often require a higher number of off-chip ac-
cesses with the inherent latency penalizations.

To find a compromise between these two solutions several
proposals have appeared that try to achieve the latency of
private configurations and the low number of off-chip ac-
cesses of shared configurations [5, 3, 10, 18, 24]. One of
the most interesting is the Cooperative Caching framework
[3]. This organization duplicates all cache tags in a central-
ized coherence engine to allow block sharing between nodes
and reduce off-chip misses. Furthermore, it uses private L2
caches to allocate blocks closer to the requester and reduce
the L1 miss latency. This technique, however, does not allow
an efficient use of all the cache space so it also implements a
forwarding mechanism for the evicted blocks. This mecha-
nism spills replaced blocks to other L2 caches to avoid future
off-chip accesses.

This organization has two main limitations. First, the
centralized structure of the replicated tags becomes a bot-
tleneck for a high number of nodes; and second, the coher-
ence engine -even if banked- may have a particular address
in any of them. This means that all banks must be accessed
on each request and a high number of tags must be com-
pared, increasing the power consumption significantly for a
system with many processors.

We propose the Distributed Cooperative Caching scheme
in order to overcome the power and scalability issues of
the Cooperative Caching framework. We have redesigned
the coherence engine structure and its allocation mecha-
nism to allow a distribution of the replicated tags across
the chip. Our allocation mechanism reduces the number of
tags checked on every request thus reducing the energy con-
sumption. Another benefit of our organization is the possi-
bility of having a smaller number of replicated tags while the
centralized Cooperative Caching requires a replica for every
cache tag. The tag entry of a block that is shared by several
caches in the Cooperative Caching framework is going to be
allocated in all the tag replicas while in our proposal only
one entry is going to be used for each block, making a more
efficient use of space. We will show that our organization
gets an average performance improvement over the Cooper-
ative Caching of 57% and a MIPS3/W relation improvement
of 4.30x for a 32-core CMP thanks to a request distribution
and bottleneck avoidance.

This paper makes the following contributions:

• We present a comparison of the power/performance
tradeoffs for different configurations of the memory hi-
erarchy of CMPs with a high number of cores. We
show that configurations with shared last-level caches
have very high bandwidth requirements for big multi-
processors. This results in a performance degradation
and a tremendous increase of the energy consump-
tion. We also show that private configurations are
the least energy consuming but have significant per-
formance penalties for a large number of cores due to
the inability to make an efficient use of the last level
cache.

• We propose the Distributed Cooperative Caching frame-
work, a new scalable and power efficient configuration
for chip multiprocessors. We present a new Coherence
Engine design that reduces power consumption and
provides better scalability. This configuration makes

possible an effective sharing of all the cache entries
while keeping blocks close to the requesting nodes.

2. DISTRIBUTED COOPERATIVE
CACHING

2.1 Cooperative Caching
Our proposal is based on the Cooperative Caching (CC)

framework [3] proposed by Chang and Sohi. CMP Cooper-
ative Caching tries to create a globally-managed, ”shared”,
aggregate on-chip cache with private caches. The main ob-
jectives of this configuration are to reduce the average miss
latency by approaching the blocks to the local node, to im-
prove the cache utilization and to achieve as much perfor-
mance isolation between nodes as possible. The hardware
requirements of this approach are a central directory with
a duplicate of all the L1 and L2 cache tags. This directory
(Central Coherence Engine) is the responsible for maintain-
ing blocks coherent and to share the blocks between caches.
Figure 1 shows the memory configuration of this organiza-
tion.

Central Coherence Engine

Main Memory

Bus

Interconnection

L2B
L1B

PB

L2A
L1A

PA

L2A Tags L2B Tags

L1A Tags L1B Tags

Figure 1: CC Memory Structure.

The working principle of this approach is that all the L2
misses are handled by the CCE -which keeps a copy of all
the tags. If a particular cache access misses in the local L2
and the block is stored in another cache, the CCE is going
to have a hit and the request will be forwarded to the owner.
Then the data is sent through a cache-to-cache transfer and
the CCE is acknowledged of the end of the transaction.

To be able to use efficiently the cache space, the coop-
erative caching also implements the N-Chance Forwarding
algorithm for replacements. When a block is evicted from
an L2 the CCE forwards it to another cache if it is the last
copy in the chip. To avoid infinite forwardings a counter
is set for each block. By default each block is forwarded N
times before being evicted from the chip and if the block
is reused the counter is reset. To avoid a chain reaction of
replacements a spilled block is not allowed to trigger a sub-
sequent spill. When applied to CMP Cooperative Caching
N is set to 1 since a replication control is already employed
and further spilling would degrade performance by evicting
newer blocks.

This approach, however, has some limitations that we try
to overcome with our proposal. The first one is that a cen-
tralized directory presents important restrictions to the scal-
ability of the multiprocessor. The centralized nature of the
coherence engine limits the number of processors that can
handle without creating a bottleneck and degrading the per-
formance. The second limitation of this configuration is the



power consumption of the centralized directory. The num-
ber of tags that must be checked on each request increases
with the number of nodes, raising also the overall power
consumption. Making the CCE scalable is somewhat chal-
lenging since the centralized version is already banked and
does not behave well for a high number of processors. In the
next section we will further discuss these limitations and our
suggested solutions.

2.2 The Distributed Cooperative Caching
scheme

We propose the Distributed Cooperative Caching (DCC)
scheme in order to solve the scaling issues of the previous
configuration. We have redesigned the coherence engine to
be able to distribute it across all the nodes. This avoids
bottlenecks and limits the number of tag checks that must
be done on each request.
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Distributed

Coherence
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Tags
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Figure 2: DCC Memory Structure.

In our approach, the Coherence Engine is partitioned into
several Distributed Coherence Engines (DCE) that are re-
sponsible for a portion of the address space. The number
of DCEs and the number of entries each one has does not
depend on the cache sizes. Figure 2 shows the memory struc-
ture used in our proposal. Addresses in the Coherence En-
gines are mapped in an interleaved way. On a local L2 cache
miss, the corresponding DCE for that address is accessed
and if the cache entry is found the request is redirected to
the owner.

The organization of the directory in the Distributed Co-
herence Engine is completely different to the one in the Co-
operative Caching scheme. In the DCC framework, tags are
distributed in an interleaved way across the DCEs in order
to distribute DCC requests across the network and hence
avoid bottlenecks. This distribution implies that, unlike the
centralized configuration that has a tag for each cache en-
try, tag entries are allocated just in one DCE depending on
its address. As a result, if the entries are not perfectly dis-
tributed in the address space, we can have more entries in
the caches than in the DCE and a DCE replacement is going
to be triggered. Because of that, it is necessary to extend
the coherence protocol to be able to handle the invalidation
of cache blocks due to DCE replacements.

Figure 3 shows the organization of the Coherence Engine
for both Centralized and Distributed versions of Cooperative
Caching. We can see that the organization of the central-
ized version is formed by a unique structure that has the
replicated tags distributed in banks, each one representing a
cache. In the DCC, we have an arbitrary number of Coher-
ence Engines that store tags from all caches. We can also

L1 Tag

Array

L2 Tag

Array

P1 P2 P3 P4 P5 P6 P7 P8

DCE Tag

Arrays

CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8

AddressBlock BitsSet Bits

LSBMSB

AddressBlock BitsSet Bits

LSBMSB

CE Bits

Distributed Cooperative Caching

Tags compared per request

L1 + L2

Size

Independent

Size

Cooperative Caching

Independent # of CE

Figure 3: Directory structures.

see in the figure that the number of tags compared for ev-
ery request is significantly smaller in the DCC scheme, and
this results in a reduced energy consumption. In the Dis-
tributed version the number of checked tags depends on the
associativity that we want to assign to the DCEs. On the
other hand, for the Centralized version, the number of tags
compared depends on the number of processors and the as-
sociativity of their caches. This number increases with the
number of nodes; making this configuration suitable only
for a CMP with a reduced number of processors. The ex-
ample of Figure 3 shows the Coherence Engines of an 8-core
CMP with 4-way associative caches. We can observe that
for the centralized version 64 tags are compared while for
the distributed version only 4 are compared.

In addition to all these benefits, the Distributed Coop-
erative Caching also allows hardware design reuse since its
modular and scalable structure can be replicated as we add
more processors on a chip.

2.2.1 The DCE replacement policy: an example
To show the benefits of the DCE tag replacement policy,

Figure 4 demonstrates the working principle of the Central-
ized and the Distributed versions of Cooperative Caching.

The situation depicted shows the L2 caches and Coherence
Engines of a system with two nodes (A and B) for simplicity.
It considers the situation of two threads, one per node, that
make an extensive use of their caches. It is also considered
that node A always makes requests slightly before than node
B. Blocks in the cache are represented by the letter of the
requesting node and a number that indicates the time when
that block was requested. We start in a warmed-up situa-
tion where both caches are full to see how replacements are
handled.

In the upper part of the figure the behaviour of the Cen-
tralized Cooperative Caching is shown. Let’s suppose that
node A makes a request for a new block (Action 1). In
this case, since the block is not in the local L2, the CCE
is checked. Since the block is neither in any other cache,
memory is accessed. Block A5 is then sent to the requester
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Figure 4: Working Example.

(Action 2). Since there is not enough space, block A1 is
spilled to node B. Block B1 is evicted from the chip since
subsequent spillings are not allowed.

In the second request, node B asks also for a block to
the CCE (Action 3). Request is forwarded to memory that
sends the block to the requester (Action 4). Since there is
not enough place, a replacement is done. The locally oldest
block, B2, is spilled to node A; evicting from the chip A2.

In the bottom part of Figure 4 the behaviour of the Dis-
tributed Cooperative Caching is depicted. As in the previous
case block A5 is requested (Action 1), but now to the cor-
responding DCE. Since the block is not in any other cache,
memory is accessed. In this configuration when the block
is sent to the DCE it generates an eviction. In order to
make the example more interesting, although the result is
the same, block B1 is replaced, invalidating the entry in the
L2 (Action 2). Then the block is allocated in the corre-
sponding DCE and sent to the requesting node (Action 3).
Since the cache is full, block A1 is spilled to node B and is
placed in the invalidated entry.

In the second request node B accesses also the DCE and
memory asking for the block (Action 4). When block B5 is
allocated in the DCE, it triggers also another replacement.
In this case the oldest block of the set in the DCE is evicted
(Action 5), this is A1. Finally B5 is sent to cache B and
allocated where the invalidated block was.

The right part of the figure shows the final state of caches
after requesting blocks A6 and B6 for both configurations.
It is clear from the result that in the distributed version
cache blocks are closer to the requesting node, improving
access latency. We can also see that the distributed version
also keeps all the newer blocks in the cache, reducing the
number of off-chip accesses. This is because the DCE may

have inherently data from all cores so that the oldest blocks
in the CMP from that set are replaced first.

2.3 Differences between Centralized and Dis-
tributed Cooperative Caching

The main differences between these proposals are:

• In the centralized version tags are just a copy of their
corresponding caches while in the distributed version
tags are ordered like a big shared cache in the DCEs.
Since tag entries are not restricted to represent only
one cache entry, this organization makes a more effi-
cient use of them. Furthermore, the distributed or-
ganization does not require to reallocate a tag when
a block is spilled or allocated in another cache. It is
only necessary to update the tag information, with the
energy savings that this implies.

• The number of tags checked per request in the DCE is
equivalent to its associativity -independent of the asso-
ciativity of the L1s and L2s. In the CCE the number of
tags checked is #L1*L1 Associativity + #L2*L2 As-
sociativity. This translates directly in a reduction in
the energy consumption.

• The DCEs implement a LRU replacement policy that
favours a broad view of evicted blocks instead of the
individual replacement of private caches in the central-
ized version. This allows a more efficient use of cache
entries.

• The size of the DCE is independent of the sizes of the
L1s and L2s while in the CCE the number of tags has
to be equal to the number of L1 and L2 cache entries.
The coherence protocol of the Distributed Cooperative
Caching framework needs to be able to handle DCE
replacements.

• The Distributed Cooperative Caching makes use of
several coherence engines that can be distributed across
the chip. This organization avoids bottlenecks in the
on-chip network and allows to parallelize the request
handling. This becomes more important as we increase
the number of processors on a chip.

Further work done by Chang and Sohi [4] evaluates dy-
namic configurations to improve fairness and QoS of the Co-
operative Caching. Our work, on the other hand, is focused
to improve the scalability and the power consumption.

3. EXPERIMENTAL SETUP
We have evaluated our proposed framework with Sim-

ics [13], a full-system execution-driven simulator extended
with the GEMS [15] toolset that provides a detailed memory
hierarchy model. We have added a power model to the simu-
lator based on Orion [23] to evaluate the energy efficiency of
our proposal. Our configuration uses simple cores with small
primary caches to improve the aggregate thread throughput
by a high number of processors [6]. Table 1 shows the values
for the most important configuration parameters.

A configuration with 4 processors has also been simulated
but has not been included in the results since traditional
organizations such as private or shared caches achieve the
same performance and are much simpler. We have used the



Parameter Value
Number Processors 8-16-32
Instr Window/ROB 16/48 entries
Branch Predictor YAGS
Technology 70 nm
Frequency 4 GHz
Voltage 1.1 V
Block size 64 bytes
L1 I/D Cache 16 KB, 4-way
L2 Cache 512-256-256 KB, 4-way
Network Type Mesh with 2 VNC
Hop Latency 3 cycles
Link BW 16 bytes/cycle
Memory Bus Latency 250 cycles

Table 1: Configuration Parameters

SPECOMP2001 workload set with the reference input sets.
The Distributed Cooperative Caching framework has been
compared against traditional organizations such as shared or
private last level cache and also against the the centralized
Cooperative Caching. In all the tested configurations two
levels of cache are used; as well as a MOESI protocol to
grant coherence between nodes. All simulations use a local
and private L1 cache and a shared/private L2 cache for every
processor. Evaluated configurations are:

Shared Memory. This configuration assumes a Non-
Uniform Cache Access (NUCA) architecture. L2 cache is
physically distributed across the nodes and logically unified.
Addresses are mapped to cache banks in an interleaved way
to try to distribute requests in the network. L1 and L2
caches are inclusive and the L2 also includes the directory
information for the allocated entries. On a L1 miss, the
L2 bank corresponding to the address is accessed. If the
block is located in another L1 in read-only mode, then it is
replicated in the requesting node L1. Otherwise, the owner
is invalidated without having to access the off-chip directory.
This configuration tries to optimize cache usage and reduce
off-chip accesses.

Private Memory. In this design, a L2 cache bank is as-
signed to every processor. On a L2 cache miss, memory must
be accessed to check if the block is shared and to retrieve
the data. This configuration makes a very small usage of
the on-chip network and tries to optimize the access latency
by placing all cache blocks in the local L2.

Cooperative Caching. We have evaluated two differ-
ent configurations for the previously presented Cooperative
Caching framework. The default Cooperative Caching ver-
sion uses a Coherence Engine capable of doing 2 transactions
per cycle. Because of the centralized nature of this config-
uration, for a high number of nodes this limitation can sat-
urate the CCE. For a fair comparison with the distributed
version we have evaluated the performance of a CCE with 4
R/W ports (Cooperative Caching 4T). This configuration,
however, increases the tag access energy due to the increased
complexity.

Distributed Cooperative Caching. The Distributed
Cooperative Caching proposal also has been evaluated with
two configurations. Both of them use 1 DCE for each node/
processor with 2 R/W ports and 4-way associativity. The
default configuration uses as many tags as the L2, requiring

128k entries for a total L2 of 4 MB. The second configura-
tion uses twice as many entries and is labeled with 2x. This
configuration is used to reduce the effect of invalidations and
check the degradation in performance they induce. Since the
Cooperative Caching uses a coherence engine entry for every
sharer and for the sake of a fair comparison the DCEs use
Full map directories (Dir-N). The extra cost in bits for each
tag in the case of a 32 core CMP with 32 DCEs is one bit per
sharer and 4 bits for the DCE state. This means that if we
assume 32 processors and a total L2 of 8 MB (i.e. 256KB per
processor), each DCE will have a size of 18 KB. We believe
the hardware overhead is reasonable and we don’t need to in-
validate any sharer, reducing the protocol complexity. This
organization, however, may limit the scalability for CMPs
with more processors. Partial map directories may be an
interesting solution for these configurations but are left for
future work. We have fully implemented the cache coherence
protocol with the DCE invalidation mechanisms. Invalida-
tion implies two extra states in the DCE state machine and
one extra state in the cache state machines. Results shown
in the next section already include the extra overhead.

3.1 Power Model
An architectural-level power model for all the interconnec-

tion network and memory hierarchy has been implemented.
The model is derived from Orion [23] for modelling the
buffers, crossbars, arbiters and links. We have estimated
the capacitances of all this components taking the technol-
ogy parameters from Cacti [21]. Also we have used Cacti to
calculate the dynamic and static energy consumption of all
the caches.

The implemented power model has been validated against
data of real multiprocessors. We have compared our im-
plementation against power numbers of the MIT Raw chip
multiprocessor [11] and the fully place and routed ASIC de-
sign of Mullins [17]. Validation results show a relative error
of about 10%. We also include a power estimation for the
cores based on power values found for similar configurations
in the literature [16].

4. RESULTS

4.1 Power/Performance Evaluation
In this section, we are going to present the evaluation of

our proposed framework compared to traditional memory
configurations and the centralized cooperative caching. Fig-
ure 5 shows the speedups of the studied configurations over
the shared cache organization. For all the different number
of processors our proposal outperforms the other configu-
rations. In addition, as we increase the number of proces-
sors we can see that the improvement over the Cooperative
Caching broadens.

Performance results show that the speedups for the art
and applu benchmarks are very high for all configurations.
This is because the performance for the shared memory con-
figuration is heavily penalized by network congestion. In
these benchmarks, the number of misses/instruction of the
first level cache is very high and motivates an increase in the
network usage for accessing the shared L2.

The weight of the power consumption of the cache subsys-
tem and the interconnect may vary depending on the core
configuration. For a small number of complex cores, the
power consumption of cores will be significant. However,



Figure 5: Normalized speedup over Shared Memory
Configuration.

for a big number of simple cores the influence of the in-
terconnect in the overall power consumption will be bigger.
For that reason we have found interesting to evaluate the
power/performance relation for the caches and interconnect
alone, depicted in Figure 6. We have also evaluated this
relation considering the core energy consumption as we will
see in short.

Figure 6: Normalized MIPS3/W over Shared Mem-
ory Configuration.

Results show that private caches and more complex schemes
have a similar power/performance relation for a reduced
number of cores. For a bigger number of processors, how-
ever, the number of off-chip misses degrades the performance
of private caches dramatically. Other configurations like
shared caches and Cooperative Caching show a significant
increase of power consumption. This increase is due to the
high amount of network traffic in the Shared cache configu-
ration and due to the energy consumption of the Coherence
Engine in the CC scheme.

We can also see in Figure 6 that the extra number of ports
in the Cooperative Caching 4T configuration does not pro-
vide a power/performance improvement. This configuration
has a small increase of performance for some benchmarks but
also increases the power consumption due to the increased
complexity. For these configurations we can see that the
Distributed Cooperative Caching scheme is the most energy
efficient.

Figure 7: Normalized MIPS3/W over Shared Mem-
ory Configuration with CPU power.

Figure 7 shows the power/performance relation consider-
ing the CPU power. In this case variations in the energy
consumption of the memory subsystem have a smaller influ-
ence in the results, reducing the differences between config-
urations. The Distributed Cooperative Caching, however,
remains as the most energy efficient solution for a 32-core
CMP. It shows an average improvement of 2.61x over a tra-
ditional shared memory configuration and a 3.33x over the
Cooperative Caching framework.

Two interesting parameters for evaluating the memory hi-
erarchy of chip multiprocessors are shown in Figures 8 and
9. These are the number of off-chip misses and the average
L1 miss latency. Traditional configurations such as shared
or private caches only achieve good results in one of them.
The best results regarding off-chip misses are obtained by
the shared cache configuration while the private configura-
tion shows a better average latency.



On the other hand, hybrid proposals like the Centralized
and the Distributed Cooperative Caching try to improve
both parameters by locating cache blocks in the local nodes
but also making use of all the on-chip cache space.

Figure 8: Off-Chip Misses per thousand instruc-
tions.

The Distributed Cooperative Caching has a number of
off-chip misses close to the shared cache configuration due
to its replacement policy. The shared tag structure of the
DCEs invalidates blocks on a replacement through a Least
Recently Used (LRU) policy. On the other hand, in the
centralized organization, replacement in caches is done in-
dependently with the least recently used block of each cache.
With the latter, spilled blocks are usually newer in the lo-
cal node and generate evictions of other entries that may
be more recent, as seen in the example of section 2. The
number of off-chip misses, however, remains very similar to
the Distributed Cooperative Caching.

Speedup results of Figure 5 also show that the perfor-
mance of the private configuration is highly penalized for a
big number of processors. The explanation of this behaviour
is shown in Figure 8, where we can see that the number of
off-chip misses is significantly increased due to an inefficient
use of the last-level cache.

The average L1 miss latency, depicted in figure 9, shows
that CC and DCC achieve the best results. This is because
both configurations behave similarly to a private cache con-
figuration and improve it further by adding a sharing mech-
anism that reduces off-chip accesses.

We can also see that the network congestion produced in
some benchmarks for the shared configuration leads to a very
high miss latency. This results explain the degradation in
performance that leads to very high speedups for the other
configurations.

4.2 Sensitivity Studies
As said in section 3, an extra configuration for the Coop-

erative Caching framework with more ports has been added

Figure 9: Average L1 Miss latency.

to see if saturation of the CCE could be avoided for a high
number of processors. Figure 5 shows that the performance
of the configuration with 4 read/write ports does not im-
prove significantly. Results for this configuration are even
worse in the MIPS3/W relation due to the higher power
consumption added by the extra ports.
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Figure 10: DCC16CE and DCC4CE organization.

We have also conducted a study to exploit the configu-
ration flexibility of the DCE. The behaviour of a system
with a DCE for each node and 16 processors (DCC16CE)
has been compared with a system with 4 DCEs and 16 pro-
cessors (DCC4CE). Figure 10 shows the DCE distribution
of both configurations. In the 4 DCE version the number
of tags has been increased so both configurations have the
same number of entries. Also, three different associativities
for the DCEs have been evaluated with our framework, 4-
way (4A), 8-way (8A) and 16-way (16A) DCEs. Figure 11
shows the speedups and power/performance relation of all
these configurations over the base DCC configuration.

Results show that configurations with higher associativity
achieve a slightly better performance. This is because the
number of replacements per request is reduced. However,
the number of tags compared in the DCEs depends on its
associativity. The power/performance relation shows that



Figure 11: DCC Optimal Configuration Study.

the speedup obtained for a higher associativity is not enough
to compensate the additional power requirements. On the
other hand, the usage of less DCEs than nodes increases the
power/performance relation by 5%. This improvement is ex-
plained by the reduction in the average distance to the DCE.
A balanced solution between distance and request distribu-
tion across the network needs to be chosen for every case.
The DCC scheme, however, provides a flexible framework to
find the optimal configuration.

Figure 12: DCE replacements per request.

Figure 12 shows the percentage of requests that end up
in an invalidation of a cache block due to the lack of tags.
For the base configuration almost half of the requests to
the DCEs end up with an invalidation, except for the ammp
benchmark that is very cpu intensive and does not stress the
memory system. These invalidations may cause a degrada-
tion of the overall performance, so we have evaluated our
Distributed Cooperative Caching framework with twice the
initial number of entries (labeled 2x in the figure). This
configuration may be to expensive in hardware for a real
implementation but allows us to see how much performance
is lost. We can see that the number of replacements per
request is highly reduced and this is translated in a per-
formance improvement. This improvement, however, is not
very high since evicted blocks of the original configuration
are always the least recently used from that set.

5. RELATED WORK
Memory hierarchy for multiprocessors has been widely

studied in the last decade to improve performance and scal-
ability of cc-NUMA architectures [1, 12]. However, the dif-
ferent latency and bandwidth constraints of CMP networks
generates new research challenges to find the best memory
organization. Many studies have appeared last years in this
field [2, 3, 4, 5, 10, 18, 24]. Proposals are divided between
snoop and directory based.

CMP-NuRapid [5] from Chisti et al. is one of the snoop
based coherence schemes. This work also proposes a dupli-
cation of tags in each node. In this scheme, tags are copied
to the local node tag set the first time the block is accessed,
and the data replicated in a closer cache if the block is ac-
cessed again. This way, all subsequent accesses will have
a smaller latency. It has the advantage that several blocks
of the same set can be in the closer cache if they are used
often with no risk of being replaced since tags and data are
separated. This proposal has the power and performance
limitation of requiring most of the times a transfer of the
least used block to a slower group when we want to add
a new one to the fast and is not scalable because blocks
are found via snoop requests. Another approach that uses
a snoopy scheme to implement cache coherence is the Un-
corq protocol [20]. This proposal uses a logical unidirec-
tional ring embedded in a 2D Torus. The ring is only used
by control messages while the rest can use any path. This
mechanism falls into the same problems as the previous one
and it achieves only good performance for a small number
of nodes. The scheme proposed by Martin et al. [14] tries
to separate performance from correctness. This idea tries
to optimize the protocol for common cases but rely on a
correctness substrate to resolve races. Also a snoop-based
coherence protocol is used, limiting the scalability.

On the other hand, several proposals use a directory based
protocol like in our case. One of them is the Cooperative
Caching framework [3] that has been widely described pre-
viously and that has been extended to provide a better fair-
ness and QoS [4]. The Utility-Based Cache Partitioning [18]
also is a directory based configuration and uses a big uni-
fied 16-way cache. In this cache, ways are assigned to nodes
according to the benefits that can produce to each thread.
Dybdahl et al. [9] proposed a similar technique but with a
different selection criteria for the sharing mechanism. Both
proposals do not try to reduce latency by allocating blocks
in the closer nodes and are not scalable due to the central-
ized nature of the last level cache. Another hybrid proposal
is the Victim Replication [24] protocol. This configuration
has a traditional distributed shared memory but adds a new
replacement mechanism to reduce the miss latency. By de-
fault, blocks have a fixed L2 cache for being stored but in
L1 replacements the block is replicated in the local cache if
there is a spare place. The main limitation of this configura-
tion is that under heavy load conditions behaves as a normal
shared cache configuration. Finally NUCA Substrate [10],
proposes a shared pool of small cache banks that can have
different degrees of sharing. Dynamic mapping allows data
to be stored in multiple banks but requires a tag check of
all the possible destinations. Results show that statically
mapping banks has similar performance and much less com-
plexity.

In addition to all these configurations, Beckmann et al.
proposed the Adaptive Selective Replication mechanism [2].



This method can be used in all the previous configurations
with private L1s that replicate blocks on their evictions like
our framework and tries to optimize the level of replication
dynamically.

Our work, as seen before, is classified in the directory
based schemes. These protocols achieve a better scalabil-
ity and we intend to design a scheme for multiprocessors
with a large number of cores. While most of the proposals
use either a centralized cache or a centralized tag structure,
our work tries to distribute coherence messages across the
on-chip network to avoid bottlenecks like a cc-NUCA orga-
nization and keep the average miss latency of private caches.

6. CONCLUSIONS
While for a reduced number of nodes traditional con-

figurations like shared or private caches provide the best
power/performance relation, in the advent of the many core
era it is essential to devise a more efficient solution. We
have seen how the Distributed Cooperative Caching frame-
work provides a scalable and energy efficient organization for
large multicore architectures using less hardware resources
than the centralized version. For a 32-core CMP, execution
time is improved by a 21% over a traditional shared memory
configuration and by 57% over Cooperative Caching. When
we also consider the energy, results are even better, show-
ing a increase in the MIPS3/W of 3.66x over a traditional
shared memory configuration and a 4.30x over the Cooper-
ative Caching framework.
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