Cache Design Under Spatio-Temporal Variability

Shrikanth Ganapathy¹, Ramon Canal¹, Antonio Rubio¹, Antonio Gonzalez¹,²

¹Universitat Politècnica de Catalunya, Spain
²Intel Barcelona Research Center, Spain
Motivation

- Manufacturing process induce variation in device parameters (Spatial).
- Adverse operating conditions make reliable operation tougher (Temporal).
- With reducing feature sizes, Memory designed from minimum geometry transistors will suffer the most from Intrinsic variations.
- Corner-case estimation of energy/delay imperative at design time.
- We propose to use a combination of Simulation and multivariate regression based curve fitting for analysis.
- Such idea also provides platform for simultaneous co-exploration of circuit-centric optimizations.
• High dependence of delay on temperature translates to multiple PDFs as against single PDF suggested by SSTA techniques.

\[D_i = \begin{bmatrix} \delta_{l_{eff}}^{p(1)} & \delta_{v_{th}}^{p(1)} & \delta_{l_{eff}}^{n(1)} & \delta_{v_{th}}^{n(1)} \\ \delta_{l_{eff}}^{p(2)} & \delta_{v_{th}}^{p(2)} & \delta_{l_{eff}}^{n(2)} & \delta_{v_{th}}^{n(2)} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{l_{eff}}^{p(j)} & \delta_{v_{th}}^{p(j)} & \delta_{l_{eff}}^{n(j)} & \delta_{v_{th}}^{n(j)} \end{bmatrix} \times \begin{bmatrix} m_{\text{pmos} _\text{leff}} \\ m_{\text{vth}} \\ m_{\text{nnmos} _\text{leff}} \\ m_{\text{vth}} \end{bmatrix} + j \cdot (D_{\text{nominal} _\text{pmos}} + D_{\text{nominal} _\text{nnmos}}) + m_{\text{temp}} \cdot \delta_{\text{temp}} \]

• As delay is linearly dependent on threshold, effective length, we begin with a first order polynomial and fit to the best curve.
Energy Estimation

- The static and dynamic energy of every component in the array sub-block is estimated at different instants of time.

- Energy is estimated as a function of the integral of current through the supply (non-capacitive).

\[
\begin{align*}
\delta_{\text{Energy}} & \equiv \left[f(\tilde{x}_0, V_{dd-nom}, T) - f(\tilde{x}_0, V_{dd-nom}, T_{nom}) \right] \\
& + \left[f(\tilde{x}_0, V_{dd}, T_{nom}) - f(\tilde{x}_0, V_{dd-nom}, T_{nom}) \right] \\
& + \left[f(\tilde{x}, V_{dd-nom}, T_{nom}) - f(\tilde{x}_0, V_{dd-nom}, T_{nom}) \right]
\end{align*}
\]

- In order to reduce the dimensions of the equations resulting from fitting using a first-order curve, we use main-effect analysis.

\[
\text{Cache}_{\text{Energy}} = \left[(E_{\text{precharge}} + E_{\text{column-mux}} + E_{\text{Driver}} + E_{\text{Decoder}}) + p^* E_{(active/\text{cell})} \right] \\
+ (n - p) E_{(\text{wline-active/\text{cell})}} + (m - 1) E_{(\text{bline-active/\text{cell})}} + E_{\text{control}} \\
+ (m - 1)(n - p) E_{(\text{inactive-cells/\text{cell})}} \\
+ f(m, n)^* E_{\text{inactive-block}}
\]
The computed error is independent of temperature.

Model performance is degraded by structures driving large loads (address decoder, sense amplifier).

At higher temperatures, access time failures are high.

Higher order splines can be used to eliminate the non-linearity observed in 0.7V range.
Usability in Circuit Optimizations

- V_{th} variability was exploited to assign dual-V_{th}.
- Lower threshold was assigned to delay critical paths.
- Delay was reduced by nearly 18% at high temperatures with minimal increase in leakage.
- Similarly, standby supply voltage of unused array sub-blocks was reduced with simultaneous dual-threshold assignment yielding energy reduction of around 50% for a single access.