Tracking Catalog: Uncovering and analyzing user tracking on the Internet

Tomasz Bujlow Valentín Carela-Español Pere Barlet-Ros

Computer Architecture Dept. (DAC)
UPC BarcelonaTech
{tbujlow, vcarela, pbarlet}@ac.upc.edu

DTL Workshop, Nov. 20, 2014
About us

- Broadband Communications Group (CBA)1
 - Research group at UPC BarcelonaTech
 - Several topics: New Internet architectures, optical networking, nano-networking, SDN, network measurements, . . .

- Network monitoring group within CBA2
 - 1 Full Professor, 1 Associate Professor, 2 Post-Doc, PhD Students
 - Network measurements, traffic classification, machine learning
 - Apply our expertise to the field of online privacy and DTL

1 http://www.cba.upc.edu

2 http://www.cba.upc.edu/monitoring
Motivation

- Different entities interested in tracking our online activity
 - Economical, political, security, even governmental interests
 - Examples: Verizon\(^3\), NSA\(^4\), political campaigns\(^5\), …

- Users would like to know *when* and *how* they are tracked
 - Disable tracking when desired
 - Decide whether accessing a resource despite tracking

- Tracking is almost impossible to avoid
 - *Do not track* option is not respected
 - Erasing cookies is not always enough
 - Fingerprinting is hard to avoid (even in private browsing mode)

\(^3\) How Verizon’s Advertising Header Works, Web Policy (2014).
http://webpolicy.org/2014/10/24/how-verizons-advertising-header-works/

\(^4\) NSA uses Google cookies to pinpoint targets for hacking. http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking

\(^5\) How President Obama’s campaign used big data to rally individual voters.
Existing tools

- **Tools available to users**
 - Check browser/privacy settings (e.g. Panopticlick)
 - Block tracking traffic (e.g. Adblock Plus, Privacy Badger)
 - Visualize third-parties (e.g. Lightbeam)
 - Safer browsing (e.g. Private browsing mode, Tor, DuckDuckGo)

- **Research projects**
 - XRay: Transparency for the web (Columbia University)
 - $heriff for price discrimination (Telefonica, UPC BarcelonaTech)
 - TaintDroid (Intel Labs, Penn State, Duke University)

- No tools available to know *when* and *how* we are tracked
Objective

- Tracking Catalog: Tell how sites are tracking us
 - Identify tracking mechanisms used by popular sites
 - Including also third parties
 - Analyze existing (and future) tracking mechanisms

- Provide it as a service for the users (e.g. browser plugin)
 - Users will know *when* and *how* they will be tracked
 - Users will be able to decide whether they access the site or not
 - Increase transparency and trust in “good” services
Methodology

- Continuously visit and analyze most popular sites
 - E.g. Alexa top-10K and their third parties
 - Automatize the process (e.g. Selenium WebDriver, FourthParty)
 - Apply Machine Learning to detect patterns and build signatures

- Analyze tracking mechanisms
 - Collect most invoked Javascripts and analyze them
 - Discover new (unknown) tracking methods

- Provide it as an open source tool to the DTL community
 - Users and researchers can contribute (data and new functions)
 - Crowdsourcing and distributed infrastructures (e.g. PlanetLab)
 - Analyze all the collected data and publish a report
Tracking mechanisms

- HTTP cookies
- Cookie leaks and syncing
- Fingerprinting (e.g. Canvas)
- Web cache and ETags
- HTTP Redirect headers
- Headers in outgoing HTTP requests
- Explicit web-form authentication
- HTML5 Local Storage
- Flash cookies and LocalConnection object
- Browsing history
- Evercookies
- Many others ...
An example: Canvas fingerprinting

- Some tracking mechanisms are difficult to uncover and block
 - Ustream - The leading HD streaming video platform (www.ustream.tv - Alexa rank: 1048) is using canvas fingerprint
 - Fingerprinting script: http://d1g3gvqfdsvkse.cloudfront.net/assets/featurekicker.js

```javascript
getCanvasFingerprint: function() {
  var e = document.createElement("canvas"),
      t = e.getContext("2d"),
      n = "http://valve.github.io";
  return t.textBaseline = "top", t.font = "14px 'Arial'", t.textBaseline = "alphabetic",
  t.fillStyle = "#f60", t.fillRect(125, 1, 62, 20),
  t.fillStyle = "#069", t.fillText(n, 2, 15),
  t.fillStyle = "rgba(102, 204, 0, 0.7)",
  t.fillText(n, 4, 17), e.toDataURL()
}
```
Open questions

- Questions we expect to answer from our study
 - How prevalent is each tracking mechanism?
 - How tracking depends on different parameters?
 - How tracking is obfuscated?
 - Which tracking mechanisms have not been detected yet?

- Other questions we would like to address
 - What is the accuracy of each tracking method?
 - For what purpose is each tracking method used?
 - Are our social network connections used for targeted advertising?
 - Is our activity while not logged in attached to our personal profile?
Tracking Catalog: Uncovering and analyzing user tracking on the Internet

Tomasz Bujlow Valentín Carela-Españo1 Pere Barlet-Ros

Computer Architecture Dept. (DAC)
UPC BarcelonaTech
{tbujlow, vcarela, pbarlet}@ac.upc.edu

DTL Workshop, Nov. 20, 2014