Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?

Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, Mateo Valero
Commodity components drive HPC

Microprocessors replaced Vector/SIMD supercomputers

- They were not faster
- They were cheaper
Vectors vs. microprocessors: transition

In 1995, when microprocessors overtook vector/SIMD
 - Microprocessors ~10 times slower than one vector CPU (FP)
 - Performance gap closing fast

SIMD vs. Message passing paradigms

Advantage: commodity volume economics
The next step in the commodity chain

- 20M cores in Jun'13 Top500
- Sold in 2012
 - <10M servers
 - >350M PC’s
 - >100M tablets
 - >700M smartphones
 - >210M smartphones (1Q 2013)
History may be about to repeat itself

In 2013, Mobile SoCs are slower
 – But performance gap seems to close

They are significantly cheaper … in high volume
Mobile SoC vs Server – side by side

Performance

- **Mobile SoC**
 - 5.2 GFLOPS
 - \(\times 10 \)
 - 15.2 GFLOPS

- **Server**
 - 153 GFLOPS
 - \(\times 30 \)

Cost

- **Mobile SoC**
 - 21$1
 - \(\times 70 \)
 - 21$ (?)

- **Server**
 - 1500$2
 - \(\times 70 \)

1. Leaked Tegra3 price from the Nexus 7 Bill of Materials
2. Non-discounted List Price for the 8-core Intel E5-2670, SandyBridge
Outline

- Motivation
- Mobile SoCs evaluation
- Mobile SoCs in cluster environment
- Challenges in HPC with Mobile SoCs
Platforms under study: CPU and Memory

NVIDIA Tegra 2
2 x ARM Cortex-A9 @ 1GHz
1 x 32-bit DDR2-333 channel
32KB L1 + 1MB L2

NVIDIA Tegra 3
4 x ARM Cortex-A9 @ 1.3GHz
1 x 32-bit DDR3-750 channel
32KB L1 + 1MB L2

Samsung Exynos 5 Dual
2 x ARM Cortex-A15 @ 1.7GHz
2 x 32-bit DDR3-800 channels
32KB L1 + 1MB L2

Intel Core i7-2760QM
4 x Intel SandyBridge @ 2.4GHz
2 x 64-bit DDR3-800 channels
32KB L1 + 1MB L2 + 6MB L3
Cortex-A9 in Tegra3 is 1.4x faster than Tegra2 (higher clock frequency)
Cortex-A15 in Exynos5 is 1.7x faster than Cortex-A9 in Tegra3
 – Higher clock frequency, higher memory bandwidth, and better core microarchitecture
Core i7 is ~3x faster than Cortex-A15 in Exynos5 at maximum frequency
 – 2x faster at the same frequency

Mobile SoC platforms as efficient as Core i7 platform at their highest operating points
Multicore performance and energy

- Tegra3 platform as fast as Exynos5 platform, a bit more energy efficient
 - 4-core Cortex-A9 vs. 2-core Cortex-A15
- Corei7 is 6x faster than Exynos5 at maximum frequency
- Tegra3 and Exynos5 as efficient as Corei7 at the same frequency
Memory bandwidth (STREAM)

- Exynos 5 improves dramatically over Tegra (4.5x)
 - Dual-channel DDR3
 - ARM Cortex-A15 sustains more in-flight cache misses
- Corei7 provides ~2x more memory bandwidth than Exynos5
Outline

- Motivation
- Mobile SoCs evaluation
- Mobile SoCs in cluster environment
- Challenges in HPC with Mobile SoCs
Tibidabo: The first ARM HPC multicore cluster

Q7 Tegra 2
- 2 x Cortex-A9 @ 1GHz
- 2 GFLOPS
- 5 Watts (?)
- 0.4 GFLOPS / W

Q7 carrier board
- 2 x Cortex-A9
- 2 GFLOPS
- 1 GbE + 100 MbE
- 7 Watts
- 0.3 GFLOPS / W

1U Rackable blade
- 8 nodes
- 16 GFLOPS
- 65 Watts
- 0.25 GFLOPS / W

2 Racks
- 32 blade containers
- 256 nodes
- 512 cores
- 10x 48-port 1GbE switch
- 8x 48-port 100 MbE switch
- 512 GFLOPS
- 3.4 Kwatt
- 0.15 GFLOPS / W

Cluster of developer kits, not a custom design
- Proof of concept and insights
- Enable software stack and applications tuning
Applications scalability

Weak scalability test with HPL
- 97 GFLOPS on 96 nodes (51% efficiency, linear scaling)
- 0.12 GFLOPS/W

Strong scalability with the rest
- Very small input set, 1GB DRAM per node

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPL</td>
<td>High Performance LINPACK</td>
</tr>
<tr>
<td>PEPC</td>
<td>Tree code for N-body problem</td>
</tr>
<tr>
<td>HYDRO</td>
<td>2D Eulerian hydrodynamics</td>
</tr>
<tr>
<td>GROMACS</td>
<td>Molecular dynamics</td>
</tr>
<tr>
<td>SPECFEM3D</td>
<td>3D seismic wave propagation (spectral element method)</td>
</tr>
</tbody>
</table>
Interconnect evaluation: SoCs under study

- **NVIDIA Tegra 2**
 - 1 GbE (on PCIe)
 - 100 Mbit (on USB 2.0)

- **Samsung Exynos 5 Dual**
 - 1 GbE (on USB3.0)
 - 100 Mbit (on USB 2.0)
TCP/IP adds significant CPU overhead

OpenMX driver interfaces “directly” to the Ethernet NIC

USB in Exynos5 adds extra latency on top of network stack
TCP/IP overhead prevents Tegra2 from achieving full bandwidth
- OpenMX does achieve peak bandwidth
USB overheads prevent Exynos 5 from achieving full bandwidth, even with OpenMX

Interconnect evaluation: bandwidth
Outline

- Motivation
- Mobile SoCs evaluation
- Mobile SoCs in cluster environment
- Challenges in HPC with Mobile SoCs
Challenges in HPC with Mobile SoCs

Our experience: Hardware

- Mobile SoCs still do not target HPC
 - Platforms are available only as developer kits

- Developer boards are not designed for continued high-performance operation
 - Usually, no cooling infrastructure
 - Very hard for packaging (also low density)

- PCIe not reliable in Tegra2 and Tegra3
 - Could fail to initialize during boot
 - Stop responding during heavy workloads
Challenges in HPC with Mobile SoCs
Our experience: System software and applications

Software ecosystem is built for high-compatibility across diverse ARM-powered Mobile SoCs
 – Entire Linux distributions compiled with lowest level of optimizations
 – Softfp ABI is still mainstream

Linux distributions and kernels are not ‘turn key’ solutions
 – Rely on vendors to provide with correct set of kernels and Linux distribution images
Mobile SoC limitations for HPC

- 32-bit memory controller
 - Even though ARM Cortex-A15 offers 40-bit address space

- No ECC protection in memory
 - Limiting factor for scalability after certain number of nodes

- No standard server I/O interfaces
 - Provide USB 3.0, SATA and (minimal) PCIe

- No protocol offload engines
 - e.g. TCP/IP runs on CPU

- Low grade thermal package

- These are only design decisions, not really unsolvable problems
 - ARM server SoCs don’t have any of these restrictions
Are Mobile SoCs ready for HPC?

- Mobile SoCs enjoy aggressive roadmaps and fast innovations
 - driven by commodity components business dynamics and market

- They have to address their limitations before entering HPC
 - ECC, interconnect, 32-bit address space, low-grade thermal package ...

- Mobile SoCs may introduce a new class of supercomputers:
 - Faster, cheaper and more energy efficient
 - If vendors decide to include a minimum set of required features