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Abstract—Wireless Community Networks (WCN) are grass-
root initiatives that leverage the connectivity gap by providing
an alternative ownership model for IP-networks, where every
piece of equipment is managed and owned in a decentralized
fashion by members from the community. However, WCN have
three intrinsic characteristics that make forwarding faults more
likely: inexpensive equipment, non-expert administration and
openness. These characteristics hinder the robustness of network
connectivity. Here we present KDet, a distributed protocol for
the detection of forwarding faults by establishing overlapping
logical boundaries that monitor the behavior of the routers within
them. KDet is designed to be collusion resistant, ensuring that
compromised routers cannot cover for others to avoid detection.
Another important characteristic of KDet is that it does not rely
on path information: monitoring nodes do not have to know the
complete path a packet follows, just the previous and next hop.
As a result, KDet can be deployed as an independent daemon
without imposing any change in the network, and it will bring
improved network robustness. Results from theoretical analysis
and simulation show the correctness of the algorithm, its accuracy
in detecting forwarding faults, and a comparison in terms of cost
and advantages over previous work.

I. INTRODUCTION

Internet protocols were not designed with resilience and
security in mind but, as connectivity becomes an essential part
of our everyday life, the fragility of networks has become
a key challenge. Many issues can hinder connectivity; they
are generally classified as control-plane faults or data-plane
faults. We focus on the data-plane, and more specifically, on
finding traffic forwarding faults in the context of Wireless
Community Networks (WCN), which are especially vulnerable
to forwarding failures because of the following:

o Low-end equipment, which may result for instance in
routing tables that do not fit in memory, or experimental
software, more likely affected by memory leaks.

o Administration is distributed and not always handled by
experts, which may result in misconfiguration errors.

e Open to everyone, which implies being also open to
people with malicious intentions.

However, the context is more general as we consider crowd-
sourced networks: computer networks built by citizens and
organisations who pool their resources and coordinate their
efforts to build network infrastructures in a rather decentralized
manner. Typical scenarios can be long-running networks in
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remote locations, mass public events with large audiences, or
in a disaster area or emergency situation.

In this paper we follow the problem formulation presented
by Mizrak et al. [1], characterised by three sub-problems:

Traffic Validation How to recognise a misbehaving path,
node or link? Which information is required for it?
Distributed Detection What network areas need to be mon-
itored? How is the monitored information distributed
among the network?

Response How does routing take this information into ac-
count to improve traffic delivery?

The contribution of this paper is KDet, the first distributed
detection protocol that is both collusion resistant and does not
rely on the knowledge of a packet’s path. By decoupling the
knowledge of the path from the detection protocol we give
the network complete freedom for using the routing protocol
of its choice, even combining several of them within the
same network, common in several WCN [2], or using routing
optimisations such as load balancing.

Other relevant characteristics of KDet are that it is run in
a decentralized way, and it faces and solves false accusation:
a monitoring node announcing false reports for another node
can never cause that node to be detected as faulty.

The rest of the paper is structured as follows: first we
introduce previous work on the topic (section II); then we
properly define the problem and system model in section III.
Section IV introduces our solution, KDet, and it is validated
and analyzed in sections V and VI respectively. Finally, we
discuss KDet implementation and limitations in section VII
and we conclude in section VIII.

II. BACKGROUND

Network connectivity is the result of a collaborative effort: a
packet reaches its destination if every node in the path properly
forwards it to the next hop. However, a node may exhibit faulty
behavior for many reasons, e.g. misconfiguration, faulty hard-
ware or tampering, resulting in (partial) losses of connectivity.

We see in the literature two common approaches to in-
crease network robustness against such failures: using resilient
forwarding mechanisms or detecting and reacting to faulty
routers. Examples of resilient forwarding are robust flood-
ing [3] or ACR [4]. However, because forwarding resilience



is achieved by using several paths to reach a destination, it
requires modifications in the network stack (e.g. using source
routing or flooding), which does not sound reasonable for
many networks, and particularly for WCNs with distributed
management and extreme diversity.

Then, on the detection approach we need to consider the two
mechanisms involved in routing: learning the proper path to
the other nodes and following the routing rules when forward-
ing a packet. The former relates to the control plane, and many
solutions have been proposed to ensure the veracity of the
routing update messages. We focus on the second mechanism:
once the routing table is established, independently of the
routing protocol used, a node should forward packets properly,
which is referred to as data-plane detection.

Although many studies have resulted in global solutions
to forwarding faults, these can usually be split into three
different mechanisms, each dealing with one of the sub-
problems introduced previously. Solutions for each are quite
interchangeable, allowing development of solutions that com-
bine the different pieces. Here we focus on the distributed
detection sub-problem, because it is the focus of the paper,
but pointers for traffic validation and response can be found
later in the paper.

As explained before, distributed detection is about deter-
mining the elements on the network to monitor and how to
distribute the collected information to detect faulty elements. A
detection protocol has two main characteristics: its precision
and its scope. A detection protocol can be more, or less,
precise on the detection, assigning blame of a faulty behavior
to a node, link, path, or set of nodes. Then, when an entity
running the detection protocol discovers a faulty behavior, it
can either keep this information to itself (local scope) or share
it with the rest of the network (global scope). In a WCN,
we are interested in a global scope, so that when a node is
discovered as faulty we can react; however, as we will see
later, the global scope is harder to achieve because it needs to
face and solve false accusation (a node reporting another as
faulty when it is not).

Solutions that keep information local usually focus on
monitoring end-to-end paths. Some examples are ODBSR [5],
SSS [6], secure traceroute [7] and those presented in [8].

Among the solutions with global scope, one of the first
distributed detection protocols was proposed by Bradley et
al. [9]. WATCHERS proposes to monitor every neighbor and
count the packets to each destination sent through each link.
Then, periodically every node floods their traffic summaries
and everybody can determine the behavior of every other
node. However, as proven by Hughes et al. [10], some issues
with WATCHERS allow faulty routers to go undetected. Dy-
naFL [11] and x [12] propose a similar approach: every node
N is monitored by its neighbors, who keep traffic summaries
of the traffic sent, S™¥, and received from N, S< . These
traffic summaries are compared to decide whether or not N
is behaving properly. The difference between DynaFL and x
is concerning who performs the actual detection. In DynaFL,
traffic summaries are collected by a central trusted authority,

who compares and then determines which nodes are faulty.
However, this approach presents two problems, because the
summaries collected between neighbors about the same link
cannot be compared (e.g. in Figure 1 the traffic summary that
A collects about the traffic sent to B, S4~, does not include
traffic destined to B; and the traffic summary collected by B
about the traffic received from A, SP<4, does not include
traffic with A as source). The problems that arise are false
accusation (the control authority has no means of knowing if
there is any discrepancy between traffic summaries for the
same link) and collusion (node A could hide the packets
dropped by B by simply modifying its report S47~5, because
it does not need to be coherent with SZ<4 and it will not
be part of the summaries considered when evaluating A). x
proposes a different approach that solves false accusation, but
it is still vulnerable to collusion. In x every neighbor will send
its traffic summaries to the other neighbors through the node
N being monitored, which allows N to make sure those are
the expected traffic summaries by comparing them with a local
version and disconnecting from nodes that are falsely accusing
N. Finally, when the neighbors receive all the summaries,
the behavior of IV is examined by the neighbors themselves.
The paper does not go into further details about how that
information is later shared with the rest of the network nodes.

Only the work proposed in [1] is capable of facing both
false accusation and collusion. Il o monitors all the path
segments of length 3 to k + 2 (where k is the maximum
number of adjacent faulty routers in the network) and the
end points of the path segment detect it as faulty when their
traffic summaries are not consistent. By detecting the whole
path segment, including the nodes doing the detection, false
accusation is solved, because a node accusing a path is always
part of the faulty path. In addition, by monitoring every path
segment of the given lengths, any set of faulty routers will be
covered by one of the monitored paths and therefore detected.
The main drawback of this approach is that a node needs to
know the next k£ + 1 hops a packet will follow to include it
in the proper summary. Other works with global scope are
[13], [14], and [15] but, for similar reasons, they do not solve
collusion and false accusation.

In summary, several solutions have been proposed to detect
forwarding faults; however, none of them are capable of solv-
ing the problems of false accusation and collusion of several
faulty nodes, except Il 2. Our work presents a solution that
covers false accusation and collusion, but in contrast with
I} 42 it does not require knowledge of paths and will detect
the faulty nodes with more accuracy than Il o. Additionally,
because KDet is path independent and a data-plane solution,
it can be deployed as an independent daemon on the routers
without the need for modifying existing network processes.

III. PROBLEM STATEMENT

The goal of the KDet is to provide a secure mechanism to
exchange monitoring information between network routers so
that faulty routers can be detected. In a network, compromised
routers can lie on behalf of each other to avoid detection:
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Fig. 1. Example network

e.g. in Figure 1, node A may cover for node B, reporting
that it has received all the traffic that node B is dropping.
The distributed detection algorithm must make sure that this
situation is properly detected, usually by monitoring larger
network areas.

Because we are focused on WCN, we must consider their
characteristics when defining KDet. For instance, Guifi.net is
a large network with over 28,000 operational nodes, born in
the Osona area and currently extending through Spain and
beyond. Guifi.net uses BGP for inter-areas routing and a mix
of several routing protocols (OSPF, BMX6, and OLSR, among
others) for intra-areas routing. Another example is FunkFeuer,
a smaller WCN with around 600 nodes deployed in seven
regions of Austria. There, the mesh backbone relies solely on
OLSR for routing. Both of them commonly feature the use
of supernodes: nodes that group together several devices and
antennas to have a broader reach.

Therefore, several factors will influence KDet:

o We cannot rely on a single routing protocol running on
the network, neither that it will be a link-state routing
protocol.

e« We cannot rely on overhearing techniques, because a
node may have several antennas.

o The detection protocol should be distributed, so that it
scales up to thousands of nodes.

Next, we discuss in more detail the system model and the
problem specification; and, using a simplified detection mech-
anism, we determine the main challenges for the distributed
detection problem.

A. System Model

In this section we introduce the assumptions and char-
acteristics considered while designing KDet regarding the
network, traffic validation mechanism and the adversary. We
also introduce some notation and elemental pieces that will be
used thorough the paper.

1) Network model:

Because our network assumptions and characteristics should
be consistent with those of a WCN, no assumption is made
regarding the network routing protocol, and nodes may have
one or several antennas. However, we assume that only
bidirectional links are considered, which is already implicit
for the vast majority of routing protocols in WCN, which
discard unidirectional links. We also assume that adjacent

nodes agree on the traffic that they have exchanged, which
can be easily achieved for unicast traffic because 802.11
acknowledges received packets.

We also assume the existence of three supporting services
provided by the network in a reliable way. First, we assume
the presence of a public-key infrastructure, more specifically
a mechanism to verify the authenticity of KDet’s messages.
A lightweight mechanism to achieve this could be SEM-
TOR [16]. A reliable neighborhood discovery mechanism must
exist, something like the connectivity maps used on several
WCN [2]. As a side note, keeping an updated vision of
the neighborhood is easier than maintaining updated path
information [17]. Finally, for the sake of simplicity, we also
assume the existence of a set of trusted authorities (TA)
responsible for collecting KDet’s reports and making them
publicly available. This role could be assigned to network
monitoring servers (e.g. graph servers in Guifi.net). However,
a flooding mechanism for reports with the proper signature
could be used, instead, if such entities were not available.

Finally, we make two assumptions about timing: the bound
is known for the packet delay between two network nodes,
and network changes (e.g. a node joins the network) happen
on a larger time scale than the protocol’s convergence, which
is reasonable because membership changes in a mesh network
are infrequent.

2) Traffic Validation function:

As explained previously, we focus on the distributed detection
sub-problem, and therefore we need a valid Traffic Validation
mechanism to go with KDet. Essentially, the traffic valida-
tion process is defined by a traffic summary function and a
validation function.

In this paper, we will use S(-) to represent that summary
function and S to represent the summary itself. Of course,
many summaries will be involved, so we will use the notation
Slink.  for the summary of some traffic going through a
specific link. For example, node A may keep a summary for
all the traffic sent to B, SA=B. and another for the received
traffic, S4< 5. Sometimes, several links may exist between A
and B, and then, we may refer to an specific link as ¢, having,
for instance, the summary of the traffic sent with destination
n through that link be St_o*(Z y-

A requirement when implementing KDet following the sec-
ond strategy (section VI) is to have defined + and — operations
over summaries. Luckily, many summary functions satisfy it:
sketches [18], [8], [11], counters [9], fingerprinting [12] or
sampling [8]; so they can be used for KDet.

Regarding the validation mechanism, it will be typically
based on the Conservation of the Flow (CoF) principle: traffic
entering a network area should be the same as traffic leaving,
except traffic destined to and generated by it [9]; so the
validation function V is simply evaluating:

S (traffyy) — 8 (traffyy) ~ 8 (traffous) — S (traffgom) (1)

Naturally, a network may experience some packet losses
without being faulty, but we expect V(Si,, Sout) to allow for



such differences and only return false when the behavior of
the network area evaluated is underperforming, and therefore
actually faulty.

It is also important to mention that the capability of KDet
in detecting a specific faulty behavior is determined by the
capabilities of & and V; e.g. if the summary function is a
simple counter, KDet will be able to detect packet droppers,
but a faulty node may modify packets without being detected.

3) Threat model:

We use a threat model equivalent to the one proposed by
Mizrak et al. [1]:

e A p-faulty node does not participate properly in the
detection protocol. For instance, it could provide false
traffic summaries or simply not participate in the protocol.

e A tfaulty node misbehaves in the traffic forwarding
process and its behavior can be detected by the traffic
validation function.

e A faulty node is either p-faulty, t-faulty or both.

The strength of the adversary can be measured by the biggest
set of adjacent faulty nodes, expressed by k. For example, in
Figure 1, k = 3.

We assume, that the network is sufficiently connected, so
that even if the faulty nodes are removed from the routing
fabric, the network is still connected and that terminal routers
are not faulty with respect to the traffic they originate or
consume.

Because the failure detector is defined in terms of intervals
of time, we also assume that the misbehavior of faulty routers
lasts long enough to be detected.

B. Specification

KDet’s concept is that a set of nodes, the core, is monitored
by its boundary with the rest of the network; and it is the
responsibility of the boundary to assess the behavior of the
core. We define the core as a set of directly connected nodes,
and the boundary of a core is every neighbor of that set of
nodes which is not already part of the core (see Figure 1).

KDet can be seen as a failure detector, and as such,
its correctness can be expressed in terms of accuracy and
completeness. The definitions of accuracy and completeness
we use are based on those presented by Mizrak et al. [1]:

e a-Accuracy: A failure detector is a-accurate if whenever

a correct router detects a core as faulty, then there is at
least one router r € core that is faulty and |core| < a.

o a-Completeness: A failure detector is a-complete if,
whenever a router 7 is t-faulty, then eventually all correct
routers will suspect a core such that » € core and
|core| < a.

C. Protocol x

In the simplest scenario where there are no colluding nodes
(k = 1), we can implement the protocol x [12]. There, every
node N is monitored by its neighbors (i.e. every node is a
core and its neighbors are the boundary). Periodically, those
neighbors share the perceived traffic summary of N through
N and that way, if N is faulty, its neighbors will detect it

and, conversely, if a neighbor sends a false report, N will
notice and disconnect from it. For example, in the network
in Figure 1, if B is the node being monitored, A, C' and D
will send to B their traffic summaries periodically; B will
compare those summaries with its own perspective and will
disconnect from any node sending false summaries. Then, B
forwards every summary to A, C' and D and they check if
the Conservation of the Flow principle is satisfied; B will be
detected accordingly.

Based on this idea, in this paper we show how we can move
this set of monitoring nodes farther away, so that colluding
nodes are kept within their boundary; and therefore we can
detect them. The main challenges to solve for it to work are:

« How to make sure that every boundary node has the same
set of traffic summaries?

o How to verify the authenticity of the reports and prevent
false accusation?

o« How to determine which cores to monitor to ensure
completeness?

IV. KDET: COORDINATED DETECTION

The main concept behind KDet is to extend the x protocol
to monitor instead of a single router, a group of them, but still
maintain its properties: if the core is faulty, the boundary can
detect it, and if the boundary falsely accuses the core, the core
can also detect it.

This is achieved by designing KDet to satisfy two principles:

o If there are one or more t-faulty nodes in the core whose
behavior influences the traffic of the rest of the network,
and there are no faulty nodes in the boundary, the core
will be detected as faulty.

o If there are no faulty nodes in the core, one or more faulty
nodes on the boundary cannot cause the false detection
of the core.

The first principle is enforced through the boundary pro-
tocol, the second by the core protocol, and their results are
combined in the coordinated detection phase.

A. Boundary protocol

The goal of the boundary is to determine the forwarding
behavior of the core. This is achieved by monitoring the
traffic entering and leaving the core, checking if it satisfies
the Conservation of the Flow principle, and suspecting the
core if not.

More formally, every node in the boundary monitors its
links with the core and keeps a summary for the incoming
traffic:

S (T) = 8 (traffic, (T) — traffic,(T))

core

and a summary for the outgoing traffic:

ST = 8 (trafficou (T) — trafficgom (1))

core

Where traffic;, is the traffic sent through link ¢ during period
T; trafficy, is the part of that traffic destined to nodes in the
core. Similarly, traffic,yt is the received traffic from link 4,



and traffic, is the part of that traffic whose source is a node
in the core.

At the end of the period, traffic summaries are exchanged
with all the boundary nodes by means of robustly flooding
them and their signature through the core.

After waiting a reasonable amount of time, each node
expects to have the summaries of every other node in the
boundary (signatures included). If some of the summaries are
missing, or their signature is not valid, the core is suspected;
if everything is as expected, the boundary node evaluates the
behavior of the core using the validation function:

=V (Z Sczfe Zsctﬁe )
Vi

Then, every node in the boundary emits its verdict by sharing
Veore(T') and a bitmap that indicates which summaries were
received with the corresponding TA.

Vcore (T

B. Core protocol

Meanwhile, nodes in the core need to be on the lookout for
p-faulty nodes on the boundary and disconnect from them. A
correct boundary behavior is characterized by:

1) There is a single and consistent version of a link’s

summary.

2) Veore(T') is consistent with the exchanged summaries.

To assess the behavior of a boundary node A, every node
in the core B, connected to it (via link ) will go through the
steps that follow.

First, at the end of the monitoring interval, it expects the
traffic summaries from 4, S_2% (T) and S’ (T). In the case
in whih there is no traffic summary, it is not properly signed,
or there is more than one version, B will consider A p-faulty.

Then, the node will compare S_2% (T) and S{;%,(T) with its
own local version, and if they are not the same, A is considered
p-faulty as well.

Finally, B compares the V.,..(T) announced by A with
the one that results from combining the summaries that have
been exchanged (available to any node in the core because of
robust flooding). Again, if the results do not match A will be
considered p-faulty.

If in any case A is considered p-faulty, then B disconnects
from it.

C. Coordinated detection

At the end of each interval, the TA gathers a report from
every node in the boundary that consists of a bitmap indicating
which summaries were received and Voo (T') . If there is any
missing summary or Veore(7") = false the TA will add the core
to the list of suspected cores (core € suspected(T')). Then, if
in the next intervals the core is still suspected and every core
node is still connected to the same nodes in the boundary, the
core is detected as faulty (core € detected(7")). Formally:

core € suspected[T1,T>] A
3T € (T1, Tz |boundary(core, T") C boundary (core, T1)
= core € detected(T")

Where core € suspected[Ti,T] means that the core
was suspected on every interval from T; to 75, and
boundary(core,7”) C boundary(core,T;) implies that for
every link existing between the core and the boundary at time
T’ the same link also exists at time 7}.

V. KDET VALIDATION

To prove the correctness of KDet we will first prove that,
no matter what faulty nodes do, KDet’s principles, defined
in section IV, are always satisfied. Then, we will use those
principles to prove that by choosing an appropriate set of cores
to monitor, KDet becomes k-accurate and k-complete under
the assumption of k being the maximum number of directly
connected faulty routers.

The first principle, enforced by the boundary protocol, is
equivalent to:

core € faulty A boundary € correct
= 3t | core € detected(t) V core € disconnected(t)

Because the core is faulty, we know that summary functions
as measured by the boundary satisfy:

Veore(T) =V (Z Sc_c:lfe( ), Z Sé;rbe( )) = false
Vi Vi

Then, by the definition of KDet, the core cannot avoid being
suspected, because if it robustly floods the summaries, it will
be suspected and if it does not, because not every summary
will be received, it will also be suspected. Modifying the
reports is not possible because they are signed.

However, the core may avoid detection by modifying its
boundary, ensuring that:

boundary (core, T") ¢ boundary(core, Tp)

That is, on each interval, it needs to reduce its boundary at
least one link. However, because the number of links are finite,
eventually the core will be disconnected from the rest of the
network, or detected.

Lemma 1: Eventually, every faulty core is either detected
or it stops being part of the network.

To continue, the second principle of KDet, enforced by the
core protocol, can be expressed as:

core ¢ faulty = core ¢ detected

Therefore, it is sufficient to prove that every time the core is
suspected, its boundary changes in the next interval.
By definition, we know that if a core is not faulty, then the
real traffic summaries satisfy:
> = true

- v <Z Sc_ozfe Zségrle
Vi

And a core can only be suspected if one of the nodes of the
boundary claims that:

‘/;ore (T

1) Not every summary was received

2) Summaries were received but V.. (T) = false



Because we use robust flooding through correct nodes, 1)
can only occur if not every summary was shared (or there
was more than one version or it was not properly signed) or a
boundary node (A) misreports the summaries it has received.
In the first case, the core will know which summary is missing
(S4~B), and then B will disconnect from A, making the
boundary change in the next interval. In the second case, every
core node connected to A will realise it is misreporting the
received summaries and will disconnect from it, and therefore
the boundary also changes.

In case 2), if every summary is received but there is a node
A that reports Voo (T') = false, that implies that either one of

the flooded summaries has been modified (SA725 # SB4)

of Veore(T) # YV (Xov; Seaie(1), >o; Séoie(T)); ie. the re-
ported V... is not correct. In the first case, B will realise
that the flooded summary, Sé);’B , 1s not the same as its local
version, Sﬁ};"‘, thus disconnecting from A (and therefore
changing the core’s boundary). In the second case, every node
connected to A will disconnect from it (changing the boundary
again).

Lemma 2: A correct core is never detected as faulty.

Now, let’s assume that for a given k£ we define the set of
cores to monitor as the sets of connected nodes that are smaller
than or equal to k:

C = {c | |e| < k A connected(c)}

Thanks to Lemma 1, we can prove that KDet is k-accurate,
since every time a correct router detects a core as faulty
(core € detected) it has to be a faulty core or it will contradict
Lemma 2. And given the definition of C, such core will always
have a size below k.

If the set of faulty nodes is F' = {f; U foU---U fx} such
that for every f;, | f;| < k and there is no link between f; and
f; if i # j (because we assume k). Then, there will be a core
¢, for every f;, such that ¢c; = f; by the construction of C' and
c; will have a correct boundary, because there are no direct
connections with any other f;. Therefore, applying Lemma 2,
every f; will be detected and since |c;| = |f;| < k, KDet is
k-complete.

VI. KDET ANALYSIS

Since we have proven the accuracy and completeness of
KDet, in this section we study its cost. This is mainly
determined by the memory required to store the state of the
protocol and the network overhead required to share traffic
summaries.

A. State size

The size of the state is determined by the number of
summaries a node needs to keep. Given a summary function
that supports the — operation, a node can follow two strategies
to save the required summaries:

1) Keep a summary for every core that it monitors (without
considering the core’s fromand to traffic) and for every
link that connects to it.
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2) Keep for every link a summary of the incoming and
outgoing traffic and additionally, for each link, the traffic
from and to every node in k-hops, so that a core
summary, S2% , can be computed as:

core’
> St )

VnéEcore

S—)i _ S—)i o

core

For small values of k, the number of cores to monitor will
be small, and therefore, option 1 will be preferred. Conversely,
as k grows bigger, the number of cores grows exponentially,
and 2 becomes a better choice.

Given k, if N is the number of nodes in the network and
R is the maximum node’s degree, then the number of cores
a node monitors is below O(Rk) and, for the first strategy,
since it keeps a summary per link, its cost will be O(R*+1).

The second strategy keeps a summary per link and at most
another per node and link (there will not be traffic from/to
every node on every link), therefore its cost is O(R * N).
In [1] Mizrak et al. show that WATCHERS cost is O(R *
N) and My o, O(min(RFTY N)). If we choose the optimal
strategy among the two here proposed, our solution will have
a tendency that is between WATCHERS and IIj .

Figure 2 shows the state size stored by each node for
the guifi.net Barcelones area [19] assuming summaries of
500B [11], [8], the lines show us the average cost for each
value of k. As expected, the cost of the first strategy is
exponential, and for any %k bigger than 1 the second strategy
already outperforms the first one. The second strategy has a
state cost that is just slightly worse than Il,o, and in any
case always below 110KB, which sounds reasonable. Similar
results have been found for different network topologies. See
[17] for these results and more detailed figures.
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B. Network overhead

In the decision on how to propagate the traffic summaries,
a node could take two similar options:

1) Robustly flood within every monitored core their traffic

summaries for each link connected to it (Sz2% and

X core
S’<—Z
core’/*

2) Robustly flood every summary maintained following the
second strategy presented before (S and S for
every link 4 and Stj(in) and Sff,im(n) for every node
n in its k-hop neighborhood) with TTL = k£ + 1, so
that they will reach every node that is also a part of the

boundary of a monitored core.

Again, we expect the same behavior: a smaller k implies
less cores to monitor and then strategy 1 causes less network
overhead; whereas a larger k implies an exponential growth
in the number of cores and therefore strategy 2 is more
convenient.

Figure 3 shows the data (MB) to be sent through each
link due to traffic summaries for every protocol period. As
we can see, here the strategy 1 outperforms 2 whenever k
is smaller than 4, because the second strategy floods traffic
summaries indiscriminately, whereas KDet-1 only floods it
within the respective cores. We observe also that now the
difference between KDet-2 and Il o is considerable because
KDet requires flooding within cores, but II 5 does not, since
its monitored units are paths. This difference in cost is caused
by the fact that KDet behaves independently from the routing
protocol and therefore cannot consider the complete path of a
packet. Given that at most around 2MB of data needs to be
shared per link, a reasonable time interval would be around 1
minute, so that the overhead is kept below 250kbps. Moreover,
techniques such as LEDBAT[20] can be used to avoid clogging
the network links with the protocol’s traffic.

VII. DISCUSSION

In this section we discuss further some of the aspects of
KDet, the assumed k and the limitations imposed by the Traffic
Validation mechanisms.

A. KDet Implementations

We have hinted at two possible implementation strategies
for KDet in section VI. However the implications of using
one instead of the other go beyond the costs in terms of state
size and overhead presented in that section.

To recap, in terms of local storage, the first strategy keeps
track of every core and keeps at every moment its summaries
updated, while the second strategy keeps several summaries for
each link: one for the total traffic going through it and then
one for each traffic stream from (or to) the set of nodes that
belong to a monitored core. When we follow the first strategy,
whenever a packet is sent (or received) through a link, it will
cause the update of several summaries, because it will relate
to several cores (whenever k is bigger than 1), and, as we have
seen, the number of summaries grows exponentially with k,
making the process of updating the summaries a computation
hog. However, if we were to follow the second strategy, each
packet will only update two summaries (the one related to the
link and the one related to the source -or destination) and,
therefore, will be able to keep up even when k is high and the
traffic rate is high. In consequence, the second strategy should
be preferred.

Then, in the flooding process we face again the same
decision: if we used the second strategy, we can first ob-
tain the core summary as 2 and then flood that summary
through the core (strategy 1) or simply flood every summary
with TTL = k£ + 1 and compose the core traffic summary
when it reaches the other boundary nodes. Now, in terms of
computation, the second strategy will be more costly, because
not only one node needs to compute the traffic summary, but
every node in the boundary, even the sender itself, must do so.
Nevertheless, for big values of k, the second strategy is less
costly in terms of overhead, as we have seen, and it is also
simpler in terms of flooding because it only needs to consider
the TTL and not to which core it belongs. Thus, there is not a
strategy that is clearly better, but it will depend on the situation
(value of k) and priorities (CPU vs. overhead).

Regarding the cores, they can be easily computed locally.
Every node looks up on the connectivity map its neighbors up
to k hops starting from itself. Without considering the node
itself, each of these paths is a core that needs to be monitored,
and every neighbor of the core’s node that is not already part
of the core is the boundary that monitors it.

B. The largest number of adjacent colluding nodes (k)

We have proposed a solution for detecting forwarding faulty
nodes in the presence of collusion and we have characterized
KDet as a function of k or the largest number of adjacent
colluding nodes. But &k may seem a concept too abstract, so
here we try to give a more concrete example. Figure 4 shows
the probability of detection when deploying KDet for a given
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value of £ on the Barcelones network, but instead presents a
percentage of randomly selected nodes acting as faulty.

As we can see, even with 20% of faulty nodes, if we deploy
KDet assuming k£ = 3, the probability of detection is still
95%. Similarly, on each network, the proper value of k can be
chosen by studying the number of nodes that may fail within
a protocol’s interval in an area of the network (k will be equal
to that number).

C. Limitations

KDet relies on a precise traffic validation mechanism; how-
ever, some of the proposed mechanisms in the literature, such
as sampling and sketches, do not provide an accurate measure,
but just an estimation with some probabilistic warranties. In
such cases, the completeness and accuracy properties should
be modified to accommodate the probabilistic nature of the
validation function, V, in a similar fashion to Goldberg et
al. [8].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented KDet, a detection protocol
for forwarding faults tailored to the requirements of WCNs,but
we believe that it can be used in other types of networks,
especially in crowdsourced networks, which share some of
the critical characteristics of community networks. We have
proven KDet’s correctness and studied its performance com-
pared with 1I;;> and WATCHERS, which showed that by
choosing the proper value of k and detection interval, the cost
of KDet is reasonable for a WCN. KDet, even though it has a
higher cost than I 5, comes with two advantages over Il o:
it can be deployed as an independent daemon on the routers,
without the need of a link-state routing protocol, and it gives
a more accurate prediction of the failing areas.

Regarding future work, we want to explore further the effect
of non-deterministic traffic validation mechanisms over KDet
and also, study methods to randomize the algorithm so that
we can further reduce its overhead cost.
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