
Community Sharing of Spare Network Capacity

Emmanouil Dimogerontakis∗‡, Roc Meseguer∗, Leandro Navarro∗, Sergio F. Ochoa†, Luís Veiga‡

∗ Universitat Politècnica de Catalunya
Barcelona, Spain

{edimoger,meseguer,leandro}@ac.upc.edu

† Universidad de Chile
Santiago, Chile

sochoa@dcc.uchile.cl

‡Tecnico Lisboa/INESC-ID Lisboa
Lisboa, Portugal

luis.veiga@inesc-id.pt

Abstract—In several community scenarios, people share benev-
olently their spare broadband Internet access connectivity with
other people who cannot afford it. Although laudable, this sharing
process can negatively affect the service received by the primary
users, thus jeopardizing the continuity of this community service.
In this paper we propose the use of a gateway that separates the
traffic of the primary users from that of the secondary users, the
beneficiaries of this sharing. We analyze the impact and behavior
of several mechanisms for using this gateway, to determine how to
maximize network utilization, use of the excess network capacity,
and minimize the impact on the primary traffic. As a result we
present a set of lessons learned and recommendations. Particu-
larly, some strategies that use tunneling for managing the primary
and secondary traffic achieve the best performance isolation for
the primary user, while the secondary user obtains the spare ca-
pacity equivalent to non-differentiated best effort, with a limited
penalty (around 20%). Combined with complementary queueing
techniques (instead of FIFO), other important flows for the user
experience (such as DNS or ICMP) can be practically unaffected.

Keywords—Internet access sharing, community network, user
experience, proxy service.

I. INTRODUCTION

Internet is for everyone [1], as Vint Cerf says “it won’t be
if it isn’t affordable by all that wish to partake of its services”.
Global access to Internet for everybody requires not only the
increase of the service availability, but also a dramatic reduction
of its cost, especially in geographies and populations with low
penetration (e.g., rural and underserved communities, and also
retired people) [2]. In this paper we look at the cost reductions
resulting from N citizens or organizations sharing their unused
Internet access capacity benevolently with M neighbors and
members of their community, through a local or regional com-
munity network. To provide such a service without negatively
affecting the quality of access of the primary users, we propose
utilizing gateways to separate the primary traffic of the donors
from the one of the beneficiaries, the secondary traffic.

Each of the M beneficiary nodes selects one or a few
of the N Internet gateways, where they send their traffic.
The gateways receive the IP traffic or HTTP requests from
these secondary nodes and try to serve them adequately.
Although this traffic uses the spare capacity of the Internet
access, it may compete with the primary source traffic, hinder
its performance, and also increase its cost, in case of data
volume or 95-percentile pricing schemes. This can be a
strong demotivating factor for the donors of Internet access
resources, therefore, making this sharing process innocuous for
them is critical to make the Web sharing service sustainable
over time. However, keeping under control this aspect of the

traffic represents a major challenge for the administration
of community networks. To help address this challenge, we
analyze several of the mechanisms for sharing the spare Internet
capacity among third parties in a community network (guifi.net
[3]), the ways to provide it, and the performance implications
of connectivity sharing at no additional economic cost. Based
on the obtained results, we present a set of lessons learned that
can help to make this sharing process suitable and sustainable.

The next section presents the background and an analysis
of the study scenario. Section III describes the experimental
framework, and it shows the evaluation results in Section IV.
Section V presents the lessons learned and conclusions.

II. BACKGROUND

Our study scenario is defined by M citizens connected to
guifi.net [3], a self-managed regional network infrastructure that
provides low cost regional connectivity. A community network
of N citizens offers its spare Internet capacity through a gateway
device. These gateways can offer IP or HTTP access: IP tunnels,
Web proxies and TCP over CONNECT HTTP method [4].

We define spare Internet capacity as the network traffic that
can be transferred to and from the Internet by secondary users
(using Internet connectivity provided by others) with no signifi-
cant performance degradation or cost penalty for primary users
(sharing their Internet connectivity). The secondary traffic may
have short-term impact on the primary in terms of packet queue-
ing, resulting in service degradation due to packet delays, loss
and reduced throughput. This affects data transport generating a
lower throughput with longer and more variable download times,
and also an overall degradation of the user experience quality.

Given that Internet connectivity may be given to primary
users according to a cost model (e.g. 95% percentile, data
volume), the secondary traffic might result in a cost penalty
that should be considered and ideally avoided. For instance,
the secondary traffic may need to be blocked to avoid having
an impact on cost under the common 95-percentile pricing
schemes [5] used by transit Internet Service Provider (ISP)
to charge according to peak demand. Of course, other cost
models come with different limits, or none at all for most fixed
domestic broadband Internet with unlimited traffic and flat
cost. Therefore, the goal of any regulation would be that the
secondary traffic does not affect the primary users in terms of
cost and performance. Achieving this goal depends on the total
traffic, primary and secondary, and should apply both when
the Internet connection is above and below the saturation point.
Some previous works [6] [7] have shown that water-filling
(taking advantage of already-paid-for off-peak bandwidth

978-1-5090-4429-0/17/$31.00 c©2017 IEEE

Secondary (1)

Primary (1)

Gateway (2)

Internet

Server (3)

Fig. 1. Physical architecture of the testbed.

resulting from diurnal traffic patterns and percentile pricing),
allows delay-tolerant asynchronous bulk data to be transferred
effectively at no transmission cost to the ISP. In a scenario with
multiple Internet gateways available to users, while one could
stop serving secondaries to avoid extra traffic charges, clients
could switch to another available proxy. This work schema was
proposed in [8] for a heterogeneous wireless mesh network,
but it is applicable to other types of community networks.

There is a rich body of work focused on reducing the
cost and increasing Internet coverage under several scenarios.
For instance, the Lowest Cost Denominator Networking
(LCD-Net) [9] explores resource pooling Internet technologies
to support benevolence on the Internet. Some of these ideas
are illustrated by WiFi sharing schemes, community-led
(PAWS [10]) or commercially-run (FON [11]), where home
broadband subscribers donate their controlled (but for free)
broadband Internet spare capacity to fellow citizens. This is
done by sharing a fixed portion of throughput [12]. In contrast,
this work considers not just local access to a shared WiFi
hotspot, but also remote access to the shared resource over a
community network that can use any network technology, such
as, wired or wireless meshes. Our research also focuses on
spare capacity, with little or no visible impact on the primary
user. This means secondary users can get from all to nothing,
depending on the capacity occupied by the primary.

III. EXPERIMENTAL FRAMEWORK

The system model, as well as the scenario for experimental
evaluation, consists of a gateway middlebox that separates the
primary traffic from the secondary that originates from a number
of nodes of the local access network, part of a wired or wireless
community network. All primary and secondary traffic is
destined to servers on the Internet. For our experiments it was as-
sumed that the traffic is Web-like, where primary and secondary
traffic comes from clients that make Web requests that result in
downloading Web objects. We also assumed that all clients in-
teract with a single server that provides content to both primary
and secondary clients. Figure 1 shows the nodes participating in
the testbed: (1) primary and secondary clients, (2) the gateway
that routes traffic from both types of clients, and connects them
with servers on the Internet (3). The gateway node manages both
primary and secondary traffic, and applies different techniques
to each traffic, considering the limited capacity of the available
Internet access uplink, while trying to assess and minimize
the impact of secondary traffic on the primary one. All the
experiments were performed on the testbed described above,
which was deployed in a laboratory type of environment.

A. Internet Access Model with Primary and Secondary Users

The characteristics of Internet access described here are
enforced on the gateway using the traffic control and queueing
discipline tools available on Linux. The Clients-Gateway
connection throughput is 100Mbps. The Gateway-Server
download throughput is limited to 1.72Mbps, based on the
values presented in [13] for Telefonica, the largest ISP in
Spain. We validated that these values were imposed correctly
on the testbed using the Network Diagnostic Test, a tool that
is used to characterize real ISPs. In addition to the modeled
values, we validated that the modeled access behaves as
expected. In the described model the bottleneck is the gateway,
who bridges the fast local and the slow external connections.

B. Traffic modeling

In the scenario of community networks, and specifically
in the guifi.net [3], gateways act as Web proxies and therefore
the traffic will be HTTP. We have used the wrk21 tool to
generate customer traffic. This allows us to perform realistic
HTTP benchmarking removing the effects of ”coordinated
omission” [14] from the measurements.

C. Metrics

The goal of this study was to compare the different
mechanisms to share spare capacity. As best case point
of reference we define the case where there is only traffic
originating from the primary (prim_only). The baseline case
we want to improve is the best-effort case where there is
primary and secondary traffic competing for the Internet
capacity without any regulation mechanism (best_effort). To
evaluate the behavior of the tests mechanisms proposed later
we utilize two metrics: 1) the co-inflicted delay on the service
time of HTTP requests for each mechanism - normalized to
the mean latency across the best-effort primary and secondary
traffic measured values - and 2) the network throughput.

D. Traffic sharing between primary and secondary

The mechanisms of ”traffic engineering” have to act only
on the gateway without requiring end-to-end changes, be
transparent to clients and servers, and be innocuous (i.e., to
have no impact or cost) when the gateway is not congested.

We experimented with three types of mechanisms based
on traffic shaping (TS), Active Queue Management (AQM)
and tunneling. For the mechanism based on traffic shaping, the
gateway monitors traffic and discards non-compliant packets
according to the spare capacity. In the case of AQM, the
gateway does not use a FIFO strategy for packets, but tries
to prioritize packages by type or flow. Finally, in the last case
we used tunneling to replace the congestion control of the
end-to-end transport protocol to that of the tunnel. All these
mechanisms are implemented on the gateway and applied on
HTTP traffic send by the clients to the gateway.

Figure 2 shows the location of these three types of
mechanisms on the network stack, indicating the types of test
applied to the primary traffic and secondary one. Next, we
explain the mechanisms considered in more detail.

1https://github.com/giltene/wrk2

Application

Transport (TCP and UDP)|AQM

Internet layer (IP)|TS

Link layer

Primary

Application

Transport (TCP and UDP)|AQM

Tunnel

Internet layer (IP)|TS

Link layer

Secondary

Fig. 2. Types of tests applied to primary and secondary traffic.

1) Based on traffic shaping: We adopted a borrowing
strategy, according to which the primary and the secondary
traffic have a guaranteed minimum throughput. The unused
throughput is considered as borrowed by the secondary since
the primary has priority in utilizing it.

2) Based on active queue management: Here we used the
Stochastic Fairness Queueing (sfq) [15] and CoDel mechanisms
(codel) [16]. The former one is used by several ISPs [17], since
it tries to order the packets in a more fair manner (a packet from
each TCP flow). The latter mechanism has been successfully
used to significantly mitigate the bufferbloat phenomenon [16].

3) Based on tunneling: In this case we used three strategies:
TCP Cubic (tcpcubic) [18], TCP Vegas (tcpvegas) [19] and
TCP LP (tcplp) [20]. In the first case we used the tunnel’s
TCP congestion control algorithm (tcpcubic) to manage the
secondary traffic. In the second case, the secondary traffic
was managed through a tcpvegas tunnel, and the congestion
avoidance algorithm emphasized packet delay (Rourd-Trip Time
or RTT) rather than packet loss. In the tcplp case, the secondary
traffic was managed through a TCP type low-priority tunnel,
with the idea of controlling congestion [21]. This approach gives
less priority to the secondary traffic than the best effort approach,
with its main goal to utilize only the spare network bandwidth.

IV. RESULTS

The experiments in this study are intended to evaluate the
impact of secondary traffic on the primary traffic, considering
the prim_only and best_effort cases as reference. The impact
of the different techniques on the user experience is measured
both when the gateway is not overloaded, and when the
gateway is saturated. Additionally, we explored the sensitivity
of the studied mechanisms to the characteristics of the traffic,
the overhead of tunneling, and the overhead of using WiFi
links, typical for access networks such as community networks.
To make service time results comparable across different
experiments where possible, the results were normalized to
the overall best_effort service time mean of each experiment.

A. Gateway not overloaded

As a first step, we studied the scenario of a not overloaded
gateway, where the traffic model consists of a single primary
user with two concurrent connections each, and four to five
secondary users with ten concurrent connections each. All
HTTP requests involve 0.1MB objects. There is a random user
think time between HTTP requests that ranges from 10 to 50 ms.
As described earlier, the Internet connection is modeled to have

prim_only best_effort tcplp
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Fig. 3. Service time of primary traffic with underutilized Internet connection.

best_effort tcplp
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Fig. 4. Service time of secondary traffic with underutilized Internet connection.

a maximum download throughput of 1.72Mbps. The resulting
total traffic (primary + secondary) does not exceed on average
the maximum throughput of the connection. Although both
traffics compete, there is sufficient throughput for both of them.

From the results shown in Figures 3 and 4 we observe that
the difference of service time for the primary traffic (between
prim_only and best_effort) is noticeable but not significant con-
sidering that the absolute latency experienced by the user when
downloading 0.1MB is not very high. Thus, in this scenario,
the best_effort strategy is already usable from the perspective
of the primary user, without requiring major improvements.
Moreover, it can be seen that the service time achieved by the
secondary traffic has a large impact on the service time of the
primary. Looking at the service time of the primary traffic, tcplp
offers values very close to prim_only. However, if we consider
the service time of the secondary traffic, the tcplp mechanism
offers comparable values to best_effort. Therefore, it manages
to improve the primary traffic without penalizing the secondary.

As shown, when the gateway is not saturated, applying a reg-
ulation mechanism, like tcplp, is not necessary and has no sig-
nificant effect on the primary traffic. Therefore, the rest of this
work will focus only on cases where the gateway is overloaded.

B. Gateway is overloaded

To simulate and reproduce an overloaded Internet connec-
tion, we used the following HTTP traffic generation model: the
primary traffic (represents one user) was generated at the rate
of 5 requests per second, while the secondary one (represents
5 users) was generated at the rate of 25 requests per second.
All the HTTP requested objects have a fixed size of 12.5KB,
except if explicitly stated otherwise. Moreover, the primary
traffic was generated with a random user think time in the range

prim_onlybest_effort codel sfq tcplp tcpvegasborrowing
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Fig. 5. Effect on primary service time under saturated Internet connection.

best_effort codel sfq tcplp tcpvegas borrowing
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Fig. 6. Effect on secondary service time under saturated Internet connection.

of 10-50ms between every request. As before, the download
throughput of the Internet connection is limited to 1.72Mbps,
to provide a more realistic experimental environment. Across
all the experiments presented in this section, the total traffic
was generated with a rate greater than 1.72Mbps to achieve
saturation of the Internet connection. As a result, the primary
and the secondary traffic had to compete to access the Internet.
codel and sfq were applied to all traffic without differentiating
primary and secondary. The results are shown in Figures 5 to 8.

Figures 5 and 6 show that the difference of service time
between prim_only and best_effort (for the primary traffic) is
substantial. The secondary traffic has both a very large impact
on the primary service time, and achieves a service time much
worse than prim_only, resulting to poorer utilization for all the
users. Using tcplp, tcpvegas and borrowing, the primary user
experiences a very good service time, while the secondary traffic
service time is much less than the corresponding primary’s gain
(∼20%). Codel achieves only a very slight improvement to both
the primary and secondary service time compared to best_effort,
while sfq does not show significant improvement. As far as
throughput is concerned, the success of the mechanisms to
prioritize the primary traffic, without significantly deteriorating
the experience of the secondary users, follows exactly the
same patterns as latency, and can be seen in Figure 7.

The effect on the user’s TCP flows is illustrated by
Figure 8. We observe that the number of retransmissions is
very low compared to the number of HTTP requests performed
in each experiment with the exception of codel that shows its
sensitivity to maximum number of flows that can be served.

As described earlier, the secondary traffic has a very signif-
icant impact on the service time and throughput of the primary

primary secondary
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
A

ch
ie

ve
d

T
hr

ou
gh

pu
t best_effort

codel
sfq
tcplp
tcpvegas
borrowing

Fig. 7. Throughput comparison under saturated Internet connection.

primary secondary
0

500

1000

1500

2000

2500

R
et

ra
ns

m
is

si
on

s

best_effort
codel
sfq
tcplp
tcpvegas
borrowing

Fig. 8. Retransmission comparison under saturated Internet connection.

traffic when competing for access on an overloaded gateway.
tcplp, tcpvegas and borrowing seem to able to prioritize primary.
Additionally, they penalize the secondary traffic, with latency
and throughput values slightly worse than best_effort.

C. Sensitivity analysis

Investigating the sensitivity of the proposed mechanisms
to characteristics of the traffic and the environment, we
analyzed their relation of the service time, to the distribution
of concurrent requests and to the object size.

1) Object Size: For object size experiment the results are
normalized based on the mean across the primary and secondary
service time results for 0.1 Mb. Figure 9 show that there is a
clear relationship between service time and object size. As ex-
pected, increasing the object size results in an increased service
time, the amount of data per second requested is increased as
well. Moreover, as far as the primary traffic is concerned, codel
and sfq present a behavior close to the best_effort mechanism,
but slightly varying based on the object size. tcplp and tcpvegas
are the solutions with behavior closest to prim_only. The
borrowing strategy seems to have a performance similar to
prim_only, but appears to be more sensitive to the the size
of requested objects. When the object size is increased (by
increasing the stress on the server), the service time for the
primary deviates significantly from prim_only. Additionally,
we observe that there is a very similar pattern of increasing
service time while increasing object size for all secondaries.

2) Proportion of requests primary-secondary: In this exper-
iment we varied the proportion of requests between primary
and secondary traffic, while keeping the total throughput and
the total number of requests. The results are normalized based
on the mean throughout the primary and secondary service

prim_only best_effort codel sfq tcplp tcpvegas borrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

0.1Mb objects
0.15Mb objects
0.2Mb objects

Fig. 9. Primary traffic service time sensitivity on Object Size of the strategies.

prim_only best_effort tcplp tcpvegas borrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Req/s: 5/25
Req/s: 10/20
Req/s: 15/15

Fig. 10. Primary traffic service time sensitivity on requests rate.

time results for the pair of 5/25 reqs/s. As expected, there is no
visible difference between codel and sfq when they are applied
without differentiating primary and secondary traffic, and the
aggregation of primary and secondary connections is kept at
30 concurrent connections. Therefore, Figure 10 only presents
strategies affected by those changes, omitting codel and sfq.

Considering the service time of the primary traffic, tcplp
and tcpvegas still behave very similar to prim_only. However,
borrowing presents again a differentiated behavior, being very
sensitive to the proportion of connections between the primary
and secondary nodes. In any case where the primary or
secondary traffic exceeds its configured upper bound data rate,
the service time increases accordingly. Regarding the secondary
traffic, all service times are close to the best_effort service time.

3) “Edge Cases” for Object Size/Requests Proportion:
This experiment shows how the different strategies function
in extreme cases while maintaining a fixed overall throughput.
More specifically it compares the case of many req/s requesting
very small objects, which fit in a single TCP frame, to the case
of 1 req/s with a large object. For this experiment, the results
were normalized based on the mean across the primary and sec-
ondary service time for the pair of 0.01Mb objects - 150 reqs/s.
From Figures 11 and 12 we can observe that these scenarios
are consistent with the previous ones. sfq and codel provide
only small improvements, mostly when there are many requests.
As far as the primary traffic is concerned, tcplp and tcpvegas
behave almost like prim_only, with an advantage for tcplp with
small objects. The borrowing strategy seems to aggravate the
situation when there are many requests, while it improves (for
both primary and secondary traffic) with larger objects.

prim_onlybest_effort codel sfq tcplp tcpvegasborrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

0.01Mb objects­150Req/s
1Mb objects­1Req/s

Fig. 11. Primary traffic Service time comparison on edge scenarios.

best_effort codel sfq tcplp tcpvegas borrowing
10­2

10­1

100

101

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

0.01Mb objects­150Req/s
1Mb objects­1Req/s

Fig. 12. Secondary traffic Service time comparison on edge scenarios.

4) Other Factors: We compared the differences in behavior
among different types of tunnels. Comparing the experiment
results we observed that the IP-over-IP tunnel has the same
behavior as best_effort on the primary traffic, with or without de-
lay, with relative differences less than 0.04%. Therefore, we can
conclude that tunnel based techniques do not add any penalty.
Additionally, we compared the behavior of tcplp and tcpvegas
used in the secondary tunnels against tcpcubic that was used for
the the primary traffic and as transport under the tunnels. We
observed that the aggressiveness of tcpcubic is the reason that
tcpvegas behaves similarly to tcplp in our experiments. Substitut-
ing tcpcubic in the primary tunnels for other TCP algorithm we
expect to obtain similar results for tcplp tunnels, while tcpvegas
tunnels would deteriorate the primary and improve the sec-
ondary service time. This behaviour of tcpvegas sets tcplp as our
best mechanism for sharing the spare Internet capacity so far.

Moreover, we evaluated the overhead of wireless (WiFi-
based) links for secondary users, as it is quite common in
access networks, such as community networks. We used an
ad-hoc (IBSS) network in channel 4 of the 2.4 GHz band.
The experiments show equivalent results to a wired Ethernet
connection, except a slight improvement for codel and sfq
both for the primary and secondary traffic.

From the results obtained we reach to the following lessons
learned. The sfq and codel mechanisms provide a behaviour
very similar to the best_effort scenario. The borrowing
mechanism is sensitive to object size and to the distribution
of the number of concurrent connections. Therefore these
three mechanisms cannot be considered as good options for
real-environment application. Furthermore, tcplp and tcpvegas
behave very close to prim_only, as far as the primary traffic
is concerned, even in edge scenarios, without creating great

prim_only best_effort tcplp tcplpcodel tcplpsfq
0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y

(m
s)

Fig. 13. Primary client ping latency combining AQM and tcplp.

extra overhead to the secondary. Between these two options,
tcplp appeared to penalize less the secondary traffic, hence,
it ranks so far as the best candidate.

Finally, we want to mention that there are other important
types of traffic in a network that may be affected by the
secondary traffic and the saturation of the Internet connection;
for instance, some important protocols such as DNS, ICMP
or packets like SYN. The results in Figure 13 show that
even in the case of an overloaded gateway, codel and sfq
contribute to improve the behavior of tcplp. Flows with very
few packets, such as ICMP ping in the figure, no longer suffer
from “starvation” by virtue of not being trapped in a FIFO
queue. Additionally, we observe that utilizing existing AQM
techniques like codel and sfq, that are already available and
implemented, we can achieve improved primary responsiveness
even compared to prim_only. While this can depend on the
traffic type, it shows potential for a more mainstream adoption
of these techniques as part of the default TCP/IP stack. The
same effect is achieved for the secondary traffic, as well as in
the primary and secondary traffic for a non-overloaded gateway.

V. CONCLUSIONS

In this paper, we investigate the cost reduction in Internet
access by citizens that benevolently share with others, through
a local community network, studying techniques that can
guarantee Web experience of the donors. We evaluated the
performance and drawbacks for the primary and secondary
users of several mechanisms for sharing spare Internet. In
summary, tcplp appears to be the most promising option,
regardless of whether the gateway is saturated or not. The
primary traffic is apparently not affected by the secondary one,
behaving like if the primary client was performing request
without competing for the Internet capacity. The secondary
traffic achieves to utilize the spare capacity, behaving like
the non-differentiated case, best effort, with a limited penalty
around 20% on the latency. Combined with complementary
queueing techniques (e.g., tcplp + codel or tcplp + sfq) instead
of just a FIFO queue, it allows to “treat well” other small, but
important for the user experience, traffic types, such as DNS
or ICMP. We believe that combining multiple shared Internet
connections at no additional penalty in performance and cost
over a local or regional community network is a valuable
method to accelerate the expansion to Internet for everybody.

ACKNOWLEDGEMENTS

This work was partially supported by the Erasmus Mundus
Joint Doctorate in Distributed Computing (EMJD-DC) funded by

the European Commission (FPA-2012-0030), the H2020 project
netCommons (H2020-688768), the Spanish government (TIN2016-
77836-C2-2-R), and Portuguese funds through Fundação para a Ciência
e a Tecnologia (UID/CEC/50021/2013).

REFERENCES

[1] V. Cerf, “The internet is for everyone,” RFC 3271, 2002. [Online].
Available: https://tools.ietf.org/html/rfc3271

[2] G. WG, “Global access to the internet for all research group,”
2016, [Online; accessed 14-September-2016]. [Online]. Available:
https://irtf.org/gaia

[3] D. Vega, R. Baig, L. Cerdà-Alabern, E. Medina, R. Meseguer, and
L. Navarro, “A technological overview of the guifi.net community
network,” Computer Networks, vol. 93, pp. 260–278, 2015.

[4] M. Welzl, S. Gjessing, and N. Khademi, “Less-than-best-effort service
for community wireless networks: Challenges at three layers,” in
Wireless On-demand Network Systems and Services (WONS), Obergurgl,
Austria, 2014, pp. 148–153.

[5] D. K. Goldenberg, L. Qiuy, H. Xie, Y. R. Yang, and Y. Zhang,
“Optimizing cost and performance for multihoming,” ACM SIGCOMM
Computer Communication Review, vol. 34, no. 4, pp. 79–92, 2004.

[6] S. Shalunov and B. Teitelbaum., “Qbone scavenger service (qbss)
definition. internet2 technical report, proposed service definition,
internet2 qos working group document,” Tech. Rep., 2001. [Online].
Available: http://qbone.internet2.edu/qbss/

[7] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram, “Delay
tolerant bulk data transfers on the internet,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 37, no. 1, 2009, pp. 229–238.

[8] E. Dimogerontakis, J. Neto, R. Meseguer, L. Navarro, and L. Veiga,
“Client-side routing-agnostic gateway selection for heterogeneous
wireless mesh networks,” in IFIP/IEEE Int. Symp. Integrated Network
Management (IM), Lisboa, Portugal, 2017, pp. 1–8.

[9] A. Sathiaseelan and J. Crowcroft, “Lcd-net: lowest cost denominator
networking,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 2, pp. 52–57, 2013.

[10] A. Sathiaseelan, J. Crowcroft, M. Goulden, C. Greiffenhagen, R. Mortier,
G. Fairhurst, and D. McAuley, “Paws: Public access wifi service,” in
The Third Digital Economy All-hands Meeting: Digital Engagement
(DE), Aberdeen, Scotland/United Kingdom, 2012.

[11] Fon. (2016) Fon corporation. [Online; accessed 10-February-2017].
[Online]. Available: https://fon.com

[12] A. Abujoda, D. Dietrich, P. Papadimitriou, and A. Sathiaseelan,
“Software-defined wireless mesh networks for internet access sharing,”
Computer Networks, vol. 93, Part 2, pp. 359–372, 2015.

[13] B. Braem, J. Bergs, C. Blondia, L. Navarro, and S. Wittevrongel,
“Analysis of end-user qoe in community networks,” in Computing for
Development (ACM-DEV), London, UK, 2015, pp. 159–166.

[14] G. Tene, “How not to measure latency,” in Low Latency Summit, 2013.
[15] P. E. McKenney, “Stochastic fairness queueing,” in INFOCOM ’90, Ninth

Annual Joint Conference of the IEEE Computer and Communication
Societies. The Multiple Facets of Integration. Proceedings, IEEE, Jun
1990, pp. 733–740 vol.2.

[16] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, Jul. 2012.

[17] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. D. Täht, “Fighting
the bufferbloat: on the coexistence of aqm and low priority congestion
control,” Computer Networks, vol. 65, pp. 255–267, 2014.

[18] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul. 2008.

[19] S. Low, L. Peterson, and L. Wang, “Understanding TCP vegas:
Theory and practice,” Tech. Rep., 2000. [Online]. Available:
ftp://ftp.cs.princeton.edu/techreports/2000/616.pdf

[20] A. Kuzmanovic and E. W. Knightly, “Tcp-lp: Low-priority service via
end-point congestion control,” IEEE/ACM Transactions on Networking,
vol. 14, no. 4, pp. 739–752, Aug. 2006.

[21] R. Khare and S. Lawrence, “A survey of lower-than-best-effort
transport protocols,” RFC 6297, 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6297

