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Summary

Decentralization, in the form of mesh networking and blockchain, two promising
technologies, is coming to the telecommunications industry.Mesh networking allows
wider low cost Internet access with infrastructures built from routers contributed
by diverse owners, while blockchain enables transparency and accountability for
investments, revenue or other forms of economic compensations from sharing of net-
work traffic, content and services. Crowdsourcing network coverage, combined with
crowdfunding costs, can create economically sustainable yet decentralized Internet
access. This means every participant can invest in resources, and pay or be paid
for usage to recover the costs of network devices and maintenance. While mesh
networks and mesh routing protocols enable self-organized networks that expand
organically, cryptocurrencies and smart contracts enable the economic coordina-
tion among network providers and consumers. We explore and evaluate two existing
blockchain software stacks, Hyperledger Fabric (HLF) and Ethereum geth with Proof
of Authority (PoA) intended as a local lightweight distributed ledger, deployed in a
real city-wide production mesh network and also in laboratory network. We quantify
the performance, bottlenecks and identify the current limitations and opportunities
for improvement to serve locally the needs of wireless mesh networks, without the
privacy and economic cost of relying on public blockchains.
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1 INTRODUCTION

Network infrastructures are critical to provide local and global connectivity that enables access to information, social inclusion
and participation for everyone. Local connectivity largely relies on access networks.Wireless mesh networks (WMNs) are a kind
of access networks comprising of wireless nodes namely wireless mesh routers, wireless mesh clients, and network gateways.
A client (connected through WiFi or wired to a mesh router) can access the Internet across a WMN1. These are self-organized
networks that can grow organically: new network links can expand the coverage of the network or increase the capacity when
links get overused. The routing protocol runs in every router by measuring the performance and quality of links and coordinates
distributed decisions about the best network paths periodically. As a result, once a routing protocol is adopted, the development
and operation of the network only depends on pooling routers and links with local decisions, without any central planning or
management.
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These decentralized networks are essential to develop community access networks, network infrastructure commons, built by
citizens and organizations which pool their resources and coordinate their efforts, characterized by being open, free and neutral2.
These decentralized access networks have been identified as one way to connect the next billion people that are still without the
Internet access3. Guifi.neta is an example of such a community effort which is one of the biggest community networks in the
world, with more than 34, 000 participating routers, combining technologies including wireless mesh and fibre. However the
main challenge of these peer-to-peer socio-technical structures are around trust among agreements between peers and how to
ensure the economic sustainability of this collective effort and the balance between contribution and consumption2.
An example scenario and mechanism for economic sustainability is the economic compensation system used in Guifi.net2.

An answer to the lack of incentives to invest in network infrastructure, it was introduced in 2011 as a cost sharing mechanism.
The idea of the compensation system is to balance between total resource contribution and its consumption. The economic
cost of any contribution and consumption of network resources by each participant in a given locality are recorded. The overall
result is a zero-sum computed periodically, frommonthly to quarterly, where the participants with over-consumption or negative
balances have to compensate those with over-contribution or positive balances.
Currently the above described economic compensation system is done manually: each participant declares its costs and con-

sumption and then the Guifi.net foundationb validates this claim by cross checking it with their own network traffic measurement
data and network inventory, according to the agreed list of standard costs. Any disparities between these two records are flagged,
clarified or raised to a conflict resolution mechanism. There is, however, room for error or intentional false or exaggerated claims
put forward by a participant, the recorded data being tampered with, or simply mistrust among the parties. The correct appli-
cation of the compensation system is critical for the economic sustainability of the network, ensuring its proper operation, as
well as future investments. Therefore, we argue that there is a need for an automated system where diverse participants, resource
providers and consumers, can trust that the consumption of resources is being accounted in a fair manner, and that these calcu-
lations and money transfers are automated, irreversible and shared across different participants, to avoid the cost, delays, errors
and potential mistrust from manual accounting and external payments.
Blockchain technology offers solutions that seems apt to make the peer-to-peer nature of access networks trusted and econom-

ically sustainable. Blockchain (more details in Section 2) is an immutable and distributed data storage without the provision of
retrospective mutation in data records. However, most blockchain networks are open and public (permissionless) that encourage
the users to protect anonymity4. This implies that anyone, without revealing their true identity, can be part of such a network
and make transactions with another similarly pseudonym peer of the network.
In the perspective of community networks such as Guifi.net, however, every participant who joins the network to contribute

and benefit from the infrastructure must first register its identity and the identity of the resources that it contributes to the wider
pool. This is particularly needed so that any malicious entity, such as hidden nodes in Guifi.net used by other ISPs, can be filtered
out5. Because of such registration process one also needs an efficient identity mechanism on top of blockchain’s immutable
record keeping. Permissioned blockhains are part of such solutions, mostly envisioned for business networks where there is often
a stringent requirement of know your customer in addition to keeping the intra- and inter-business transactions confidential.
In this study, we extend our previous work6 by exploring the plausibility of combining decentralized access networks with

a permissioned blockchain running on servers inside the access network, that would result in a model for economically self-
sustainable decentralized mesh access networks, guaranteeing trust among participants, allowing economic profitability, and
enabling at the same time easier Internet connectivity. We study the viability of such an approach, by evaluating two of the most
prominent platforms for building local blockchain applications. These platforms are Hyperledger Fabric (HLF)c, an industry-
oriented modular, and permissioned distributed ledger and the Ethereumd, a general-purpose platform acting as a permissioned
blockchain through the lighter PoA validators among a small set of replicas inside the network.
We deploy the Hyperledger Fabric and Ethereum PoA platform in a local network in our laboratory, and well as in a

decentralized production wireless mesh network that is part of Guifi.net. Our key contributions are summarized as follows:

• First, we analyze the performance of both platforms in terms of metrics such as transaction latency, CPU and memory uti-
lization of Hyperledger Fabric and Ethereum PoA components. To the best of our knowledge, this is the first Hyperledger
Fabric and Ethereum PoA deployment made in a production wireless mesh network. Our results show that both Hyper-
ledger Fabric and geth Ethereum PoA network can be deployed on even resource constrained devices like RPI3 boards or

ahttps://guifi.net/
bhttps://fundacio.guifi.net/Foundation
chttps://www.hyperledger.org/projects/fabric
dhttps://www.ethereum.org/

https://guifi.net/
https://fundacio.guifi.net/Foundation
https://www.hyperledger.org/projects/fabric
https://www.ethereum.org/
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router boards with limited computational capability. Both the blockchain software stacks perform well without saturation
and much delays for a moderate load of up to 100 transactions fired in the network at a time. In Hyperledger Fabric, our
measurements reveal that endorsers are the bottleneck and care has to be taken in designing endorsement policy for scal-
ing the network. In case of Ethereum PoA, our results show that a there is a limit on the number of requests a node can
support and can only be scaled vertically i.e. by increasing computational capability of serving node.

• Second, driven by the findings in a mesh network, we propose a placement scheme for Hyperledger Fabric and Ethereum
PoA components that optimizes the performance of the blockchain components in mesh networks.

The rest of the paper is organized as follows. In Section 2 we briefly discuss the target blockchain platforms, Hyperledger
Fabrics and Ethereum, and the way how their protocol works. In Section 3 we describe and characterize the performance of
the QMPSU mesh network and testbed where our experiments are performed. In Section 4 the performance of Hyperledger
Fabrics and Ethereum platform is presented and our main findings are discussed. Section 5 describes related work and section
6 concludes and discusses future research directions.

2 BLOCKCHAIN: THE UNDERPINNING TECHNOLOGY

Blockchain is an append-only immutable data structure. Its first incarnation was in the Bitcoin cryptocurrency network4.
Blockchain was used to enable trust in financial transactions among different non-trusting parties in a pure peer-to-peer fash-
ion without the need for going through a third financial party like e.g., a bank. Such trust is provided in terms of immutability
of blockchain’s data structure. Each block in blockchain contains information that is immutable. The immutability aspect is
rendered true by including the hash of all the contents of a block into the next block which also chains the blocks together. Tam-
pering with one block disturbs the contents of all the following blocks in the chain. Each block in the chain is appended after a
consensus is reached among all the peers of the network. The same version of a blockchain is stored in a distributed manner at
all the peers of the network. That is why it is sometimes referred to as distributed ledger as well.
In this section, we briefly discuss two blockchain platforms chosen for evaluation of economic compensations among con-

sumers and providers of connectivity in wireless mesh networks, as automated calculations with irreversible transactions and
money transfers, shared across several participants. These are Hyperledger Fabric and Ethereum, due to their popularity, maturity
and potential to be used in different applications.

2.1 Permissionless vs Permissioned, Public vs Private
Bitcoin4 and Ethereum7, as various other blockchains, are considered as permissionless, meaning that anyone has "write" access
to the blockchain. As a result anyone can be a part of the network, mining and performing transactions with other parties.
The consensus in such an open environment is tackled with algorithms like the Proof-of-Work(PoW) protocol. A potential for
anonymity and privacy is also at the heart of such platforms. A user (or in general an entity) usually uses the hash of its public
key as pseudonym or a zero-knowledge protocol as opposed to using its real-world name or details.
In the aspect of "write" openness, permissioned blockchains are in sharp contrast with public blockchains which we discuss

next. Permissioned blockchains, a concept particularly popularized by the Linux Foundation’s Hyperledger, are usually con-
sidered for business applications. In such applications the identity of users, in addition to trusted and immutable data storage,
is also important such as the stringent requirement of know your customers for many businesses. Hyperledger tries to leverage
the best of both worlds by implementing a cryptographic membership service on top of blockchain’s trusted, immutable, and
distributed record keeping.
Another categorization can be done based on the openness of reading from the blockchain. In the case where a blockchain

exposes its data publicly it is characterized as public. On the other hand, blockchains that prohibit access to its data are called
as private.
In our study, the requirement of both users’ identity and trusted record keeping is of paramount importance and that is why

we decided to conduct our study using private permissioned blockchains. Hyperledger Fabric fulfills by default these prop-
erties. On the other hand, while Ethereum is not primarily destined to serve these purposes, it can also be used as private
permissioned blockchain. Nevertheless, executing resource-full consensus algorithms in a permissioned environment where the
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participants are known has no application except experimentation with the protocols themselves. On the other hand, some pro-
tocols, like Ethereum, offer inexpensive consensus algorithms, like the Proof-of-Authority (POA) protocol, that are ideal for a
private permissioned instances, as envisaged in our scenario.

2.2 Hyperledger Fabric (HLF)
Hyperledger Fabric (HLF)8 is an open source implementation of a permissioned blockchain network that executes distributed
applications written in general-purpose programming languages (e.g., Go, Java etc). HLF’s approach is modular, which implies
that the platform is capable of supporting different implementations of its different components (such as different consensus
protocols) in a plug-and-play fashion.
The HLF architecture comprises of the following components:

Peers: Peers can further be of two types namely endorsers and committers. A peer is called a committer when it maintains a
local copy of the ledger by committing transactions into its blocks. A peer assumes the role of an endorser when it is
also responsible for simulating the transactions by executing specific chaincodes and endorsing the result (see the next
subsection 2.2.1). A peer can be an endorser for certain types of transactions and just a committer for others.

Ordering service: The role of this component is to order the transactions chronologically by time stamping them to avoid the
double spend problem4. The ordering service creates new blocks of transactions and broadcast them to the peers which
then append these blocks to their local copy of the blockchain (or ledger). The ordering service can be implemented
as a centralized or decentralized service9. It is at the ordering service level where the consensus (like proof-of-work in
Bitcoin4) related to the state of a blockchain takes place.

Chaincode: A chaincode or a smart contract is a program code that implements the application logic. It is run in a distributed
manner by the peers. It is installed and instantiated on the network of HLF peer nodes, enabling interaction with the
network’s shared ledger (i.e., the state of a database modeled as a versioned key/value store).

Channel: A channel provides a higher layer of confidentiality abstraction. A channel can be considered as a subnet on top of a
larger blockchain network. Each channel has its own set of chaincodes, member entities (peers and orderers), and a distinct
version of a distributed ledger. This should not be confused with a similar term, payment channels, used to make multiple
off-chain micro-payments, multiple transactions, without committing all to a blockchain.

Membership service provider (MSP): HLF makes use of a dedicated and exhaustive Membership Service Provider (MSP)e,
which is based on public-key infrastructure (PKI) and hierarchical certificate authorities (CAs), to define roles and security
clearance (for different channels) of different entities for a particular use case. The goal of such a dedicated MSP is to real-
ize the concept of an organization-like hierarchical security infrastructure in the form of a hierarchical and permissioned
version of blockchain.

2.2.1 HLF Protocol
Figure 1 depicts the sequence of transaction execution steps in HLF’s environment. The description of these execution steps are
as follows:

1. Transaction (Tx) proposal: In this step clients access the HLF blockchain to submit a proposal for a Tx to be included in
one of the blocks of the HLF blockchain. Clients propose a transaction through an application that uses an SDK’s (Java,
Python etc) API. This is shown as the first step in Figure 1.

2. Endorsement and Tx simulation: The transaction proposal from the above step is then broadcasted to the endorsing peer
nodes in the HLF blockchain network. Each endorsing peer verifies the Tx proposal in terms of its correctness (i.e.,
its structure, the signatures that it contains, and the membership and permission status of the client that submits the
transaction) and uniqueness (i.e., this proposal was not submitted in the past).
After the above checks comes the transaction simulation step. Endorsing peers invoke a relevant chaincode (as specified
in the Tx proposal by the submitting client). The execution (as per specific arguments in Tx proposal) of this chaincode

ehttps://hyperledger-fabric.readthedocs.io/en/release-1.3/membership/membership.html

https://hyperledger-fabric.readthedocs.io/en/release-1.3/membership/membership.html
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FIGURE 1 Hyperledger Fabric Protocol

produces an output against the current state of the database (ledger). Without updating the ledger’s state, the output of the
Tx simulation is sent back in the form of proposal response to the client through the SDK. In Figure 1 this is shown by
the second step.

3. Inspection of proposal response: After the above step, client-side application collects the responses from the endorsement
step. Afterwards all the responses are cross checked (in terms of the signatures of the endorsing peers and the content
of the responses) to determine if there are any disparities among the content of the responses. If the content of all the
responses are the same and according to the pre-defined endorsement policy (i.e., number of peers whose endorsements—
in terms of their signatures—are necessary) then the client submits this Tx to the Ordering Service (more on it in the next
step) that will in turn ultimately update the ledger’s state as per the Tx simulation outcome in the last step.

It can also happen that in the Tx proposal, made in the last step, only the current state of the ledger was queried. In this
case there will be no need to update a ledger’s state and hence there is no submission to the Ordering Service by the client.
In Figure 1 this is shown by step three.

4. Tx submission to the Ordering Service: The Ordering Service collects various Txs after the last step via various channels.
This is step four in Figure 1.

5. Tx ordering: Ordering Service orders various Txs according to their receiving times. This ordered set of Txs is then included
in a block, specific to a channel, which will later be appended to the channel’s ledger. This is covered by step five in Figure
1.

6. Tx validation and committing: In this stage all the peers belonging to a particular channel receive a block containing Txs
specific to this channel. Each peer then checks all the Txs in terms of their validity. Valid Txs are those that satisfy an
endorsement policy. If the Txs pass the validity test then they are tagged as valid otherwise invalid in a block and then this
block is finally appended to the ledger maintained by the peers of this channel. This is covered by step six in Figure 1.

7. Ledger update notification: Finally, after the ledger update in the last step the client of the submitting Tx is notified about
the validity or invalidity of the Tx that was included in the latest block of the channel’s distributed ledger. This is step
seven in Figure 1.

2.3 Ethereum
Ethereum is an open-source blockchain platform that can be used in a public or private setting and adds the provision of building
decentralized value-transfer applications (DApps). Ethereum builds upon the Bitcoin system and introduces the concept of
Ethereum Virtual Machine (EVM). EVM implements the Ethereum protocol (discussed next) which is responsible for handling
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the state transitions and associated computations without the involvement of third party intermediaries. The logic that powers
a DApp is written in the form of a set of computer programs, so called smart contracts, that are being executed by the EVM.
The concept of a smart contract can be understood as the algorithmic enforcement of policy agreements among, often mutually
non-trusting, peers of a consortium7. A set of smart contracts for a DApp, in turn, can be considered as a state machine, which is
executed by the EVM of all the participating nodes. While the main Ethereum platform is a public blockchain network, the core
platform software is open source and allows developers to configure and deploy a private and permissioned blockchain network
(test networks) where only authorized nodes are allowed to participate.

2.3.1 Ethereum Protocol
In Ethereum’s ecosystem, there are two main types of entities namely: i) an externally owned account (EOA) with an address
and a ii) smart contract written in a contract-specific programming language, such as Solidity, and is compiled into byte code
which gets executed by an EVM f. In addition to an EOA, a smart contract is also assigned an address when it is deployed on
the blockchain, however, it is used in a nuanced manner when compared to the address usage of an EOA. Anyone in possession
of an EOA’s address credentials can make a value-transfer transaction with another EOA by specifying its blockchain address.
In such transfers the overall systems’ state remains unchanged. However, in contrast, it is also possible for an EOA to make a
transaction with a smart contract. In these types of transactions a specific function of a smart contract is invoked that usually
triggers a state change in the overall EVM. It is also possible that one smart contract invokes a function of another smart contract
possibly executing another associated EVM. It should be noted here that in Ethereum, each time a piece of code is invoked for
execution (such as a smart contract’s function) all the nodes of the network execute the same piece of code ensuring the correct
execution of a program’s logic. The state change, in turn, is then recorded in a decentralized manner in the form of mined (more
on mining later), which are mutually agreed-upon, blocks ensuring immutability of such records. This way Ethereum enables
a trusted and decentralized environment to automate a consortium-based application with trusted value-transfer transactions
among the (potentially mutually non-trusting) peers of such a consortium.
Looking closely, a transaction-based state change in Ethereum’s ecosystem can be understood with the help of Eq. 17.

�t+1 ≡ Γ(�t, T ) (1)
In Eq. 1, Γ represents a state-transition function and � represents an arbitrary state. A state (�), in general, can be defined as

a collection of different types of records. As an example a state, in Ethereum, can consist of account balances, operations on a
piece of data, specifics of agreements between two transacting parties etc7.
Consensus engines in Ethereum: Presently Ethereum predominantly uses a PoW-based consensus engine called Ethash.

PoW can be understood as a lottery-based consensus protocol introduced and popularized by Bitcoin4. The primary purpose
of PoW is to avoid double spending of digital assets. PoW provides a trust guarantee to a payee which helps her establish the
absence of a double spend of a unit of a digital asset. The actual proof is provided in the form of an integer so called a nonce
which if, together with all the data contained within a block, is hashed produces an output string of characters which matches a
predefined pattern. Such a pattern of hash outputs determines the computational difficulty of finding such a nonce. The process
of finding a nonce is referred to as mining. More specifically the difficulty of mining a block (i.e., finding a relevant nonce) is
determined by number of leading zeros of a hash output. The peer node of a blockchain network who finds a nonce is often
referred to as a miner.
One of the other consensus engines currently in use in Ethereum’s universe is called Clique. Clique engine makes use of a

consensus protocol called Proof-of-Authority (PoA). In contrast with PoW, PoA is computationally less expensive and eases the
process of scaling a network. PoA-based consensus engines help to establish a private and permissioned version of a blockchain.
In PoA, in contrast with PoW, the nodes who can have a say in appending new blocks to a blockchain are carefully chosen with
known identities are referred to as sealers. In turn, the process of appending a new block to a blockchain running a PoA-based
consensus engine is called sealing. Such nodes are also sometimes referred to as authorities. Specifically, sealing implies that if
a block contains digital signatures of majority of authorities then it is considered as a valid block. However, PoA has proven to
be less secure as compared to PoWg and that is the reason that it is predominantly being used by test networks and private chain
setups for experimental purposes. In this paper we also make use of PoA-based Clique engine for our experiments. Since we

fhttp://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
ghttps://medium.com/poa-network/exploiting-consensus-vulnerability-in-a-parity-client-to-hard-fork-an-ethereum-based-network-d2c368bf0bac

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
https://medium.com/poa-network/exploiting-consensus-vulnerability-in-a-parity-client-to-hard-fork-an-ethereum-based-network-d2c368bf0bac
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have setup a local and private Ethereum blockchain we conjecture that security is not going to be an issue as far as our empirical
analyses are concerned.
As a final note on Ethereum’s consensus engines, we would like to briefly mention Proof-of-Stake (PoS). Ethereum’s com-

munity is planning an eventual migration from its PoW-based Ethash to a PoS-based consensus engine primarily because of
network scalability issues prevalent in a computationally intensive PoW. PoS can be understood as close to PoA where instead
of an identity of a node the monetary value in the form of digital assets that a node owns in the network is at stake. The nodes
with biggest stake in the network will have a bigger say when it comes to appending a new block to the chain, while in PoA
validators just take turns. However, the idea of a PoS-based Ethereum is still in its infancy and does come with its fair share of
problems most notably a mismatch of interests of nodes in the underlying network with equal stake in the networkh.

2.4 Comparison of Hyperledger Fabric and Ethereum
The main differences between HLF and Ethereum derive from their inherent approaches of adopting a permissioned vs open
blockchain paradigm respectively. HLF, as we see above in Section 2.2, has been developed mainly to promote a closed and
permissioned version of blockchain with stringent confidentiality guarantees among a set of transacting member peers, by seg-
regating them in different channels and associated chain code or a distributed application. On the other hand Ethereum proposes
an open and generic flavour of blockchain, as a platform to build distributed applications and promote automation. The evolution
of both of these platforms is heavily influenced by the original premises described above.
Consensus: In its first incarnation, i.e., in Bitcoin4, Proof ofWork (PoW) based consensusmechanismwas originally proposed

to solve the double-spending problem (see Section 2.3 for details) in an asynchronous manner. Tracing the evolution ladder
up one step, Ethereum can be considered as an evolved and more generic version of Bitcoin which popularized the concept of
smart contracts with an associated Turing complete programming language. Since Ethereum builds upon Bitcoin’s core, it is
quite natural for it to inherit many of the Bitcoin’s legacy traits: PoW-based asynchorous consensus mechanism, being public
and permissionless are among the most notable ones. We did, however, see Ethereum making use of a Proof of Authority (PoA)
based consensus engine in the last section to introduce a permissioned flavour of its blockchain. Such proposals are still in
their infancy and we conjecture that they need time to get mature and widely adopted. In comparison, HLF has adopted a more
hierarchical and synchronous approach in achieving consensus and appending new blocks to a blockchain. This is mainly due to
the Ordering Service (as described in Section 2.2), which is responsible to timestamp the transactions and avoid double-spends
in the network. The same Ordering Service introduces, up to some extent, centralization in the way HLF achieves consensus
on a particular state of a blockchain. If a single instance of an Ordering Service is used then it raises the concern for a single-
point-of-failure as well. However, single-point-of-failure is not a major concern in the asynchronous PoW-based blockchains
such as Ethereum. In our experiments we deploy only one instance of Ordering Service to keep the setup simple and perform
experiments to evaluate HLF’s core architecture rather than auxiliary problems like the single-point-of-failure.
Architecture: There are several aspects to consider:

• Public vs private: HLF and Ethereum’s design differ in their approach in addressing the pool of usecases in public and
enterprise domain. Ethereum was designed to be completely decentralised setup in public domain with all nodes in the
network being equal and then slowly being adopted to private or enterprise usecases. Ethereum also has a native currency
called ether. HLF was designed focusing to solve enterprise usecases, rather than providing a public blockchain platform.
It does not have inbuilt currency, but allows for creation of coins on top of the network through chaincode.

• Extent of Decentralisation: Not all nodes are equal in HLF’s network. There are set of privileged nodes - endorsers,
orderer, membership providing service, that have more control and access than other nodes - peers, making the system
more centralised as compared to Ethereum. Further, in contrast with Ethereum’s flat approach to reaching consensus, HLF
has two main interlinked levels where consensus is reached in an hierarchical order. HLF follows an order of execution
of the chaincode and validation of transaction with endorsement policy by multiple endorsers, order the transaction and
put in a block. More specifically, the first level involves satisfying an endorsement policy where signatures from a pre-set
number of endorsing peers are collected for a transaction proposal (see Section 2.2.1 for details). The second step occurs
at the level of Ordering Service, which orders the transactions in block. On the other hand, Ethereum follows an order
where each node should check and execute the transaction, generate/propose a block, validate the block and broadcast it.

hhttps://medium.com/poa-network/proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256

https://medium.com/poa-network/proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256
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The initial check happens by the node where the transaction is submitted, and not by a set of endorsing nodes as in case of
Hyperledger Fabric. This approach of Ethereum leads to higher collision during reaching consensus, as well as to higher
chances of forks in a large network. Ethereum handles forking using GHOST protocol. While HLF’s design makes it less
prone to forking and with careful design of endorsement policies, the forking problem can be completely avoided. At the
ordering level, HLF provides a modular plug-and-play approach where a consensus mechanism can be chosen from a set
of available mechanisms that can be deployed pertaining to a specific use case at hand. Currently the default option is a
single orderer setup, while Kafka based multi-orderer setup and PBFT techniques are also popular.

• Confidentiality: When it comes to the permissioned blockchain paradigm, HLF’s approach to implement a private and
permissioned blockchain is more exhaustive and fine grained as compared to Ethereum. As we discussed in Section 2.2,
channels and MSPs implement an intricate and hierarchical, much akin to an actual organization, permissioned infras-
tructure with clearly defined roles and security clearance for different entities in the network. In Ethereum, the closest
deployment to a permissioned blockchain would be adopting a PoA-based consensus engine, which is still quite a flat
approach as compared to HLF’s MSPs and channels with their dedicated ledgers at different levels with associated set of
chain codes.

3 CASE STUDY: A LOCAL BLOCKCHAIN IN THE QMPSU MESH NETWORK

The Quick Mesh Project (qMp) i develops a firmware based on OpenWrt Linux with the aim to ease the deployment of mesh
networks by the users who are willing to interconnect in an area, and pool their Internet uplinks10. qMp was initiated in 2011
by a few Guifi.net activists.
The qMp firmware has enabled to deploy several mesh networks with actual end-users (e.g., more than 250 active locations,

typically households) in several parts surrounding the city of Barcelonaj. At the time of this writing, there are 10 different
neighbourhood mesh networks, and the largest (Sants-UPC or QMPSU) has 85 operational nodes. In that network, there are two
gateways that connect the QMPSU network to the rest of guifi.net and the Internet. Users join the mesh by setting up outdoor
routers (i.e., antennas) that automatically establish router-to-router links. The outdoor routers are connected through Ethernet
to a home network, with an indoor AP (access point) where the edge server devices run diverse services: home-servers such as
Raspberry Pi’s or Cloudy devices11. The network and the home-servers are deployed and operated by citizens that coordinate in
periodic meetings and a mailing list. These home-servers are used for network management and traffic accounting, and the fact
of having several independent traffic logs and network monitors, even using different software tools, which allows to increase
resilience but also trust, as not all can fail, lose data due to failures or network partitions, or collude at the same time.
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Network performance:We monitored the QMPSU mesh network for a period of one month. We took hourly captures from
the network for the entire month of March 2018. Figures 2 and 3 depict the bandwidth and traffic distribution of all the links
in the network. Figure 2 shows that the link throughput can be fitted with a mean of 13.6 Mbps. At the same time Figure 2
reveals that 60% of the nodes have 10Mbps or less throughput. Figure 3 demonstrates that the maximum per-link traffic in the
busiest hour is 1736 kbps. We observed that the resources are not uniformly distributed in the network. There is a highly skewed
bandwidth and traffic distribution12.
Node deployment: Based on the network measurement analysis we strategically deployed 10 Raspberry Pi (RPi3) devices

on the outdoor routers to cover the area of the QMPSU network as presented in Figure 4. We use our previous work13 on service
placement to determine nodes in the network. In this set, we cover nodes with different properties: with higher bandwidth, nodes
that are highly connected (i.e., with high degree centrality)14, nodes acting as bridges (with high betweenness centrality), and
nodes not well connected. After the nodes were chosen, we deployed 10 RPi boards in the community users home.
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BASP: Bandwidth Aware Service Placement In order to determine the best nodes in the QMPSU network where to place the
Hyperledger Fabric and Ethereum components, we use the BASP heuristic from our previous work13. The BASP (Bandwidth
and Availability-aware Service Placement) service placement heuristic takes into account the bandwidth of the network, node
availability and CPU of the nodes to do smart node selection/placement. BASP is executed every single time a (new) service or
node deployment is about to be made. BASP runs in three phases. In the first phase, BASP partitions the network topology into
k (maximum allowed number of service replicas) and removes the nodes that are under the pre-defined availability threshold.
In this phase, BASP uses the naive K-Means partitioning algorithm in order to group nodes based on their geo-location. The
idea is to get back clusters of nodes that are close to each other. In the second phase, BASP estimates and computes the max
bandwidth of the nodes in the network. The bandwidth between two nodes is estimated as the bandwidth of the link having the
minimum bandwidth in the shortest path. In the third phase, BASP re-assigns nodes with higher CPU and availability to the
selected clusters formed in the second phase. Figure 5 demonstrates the phases of the BASP.

4 EVALUATION

We evaluate the performance of Hyperledger Fabric and Ethereum PoA inside a wireless mesh setting for parameters like CPU
load, memory consumption and transaction latency with varying number of transactions as well as varied placement strategies
of blockchain nodes. For this, we setup a testbed network comprising RPi3 boards in the QMPSU networkk. Each RPi3 board
runs either a Ethereum node or a component of Hyperledger Fabric (see Section 2.2 and Section 2.3 for details). The RPi3

khttp://dsg.ac.upc.edu/qmpsu/index.php
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boards have 1.2GHz 4 core ARM cortex A53 processor, a RAM memory of 1GB and run raspbian-stretch OS. In parallel, we
also deployed a similar setup in the lab environment (for performance comparison purposes) and evaluated the performance in
both environments.
We perform identical experiments in permissioned blockchain network setup for both Ethereum PoA and Hyperledger Fabric.

The scenario of a typical experiment in both Ethereum PoA as well as Hyperledger Fabric is - a client sends N balance transfer
request between two parties/accounts to a node in the blockchain network. In Ethereum sendTransaction operation is used to
transfer funds between two accounts. While in the case of Hyperledger Fabric, a chaincode, deployed in endorsers, is executed
to transfer funds between two parties e.g., Alice sends 10 tokens to Bob [A, B, 10].

4.1 Evaluation Metrics and Transaction Application
In order to evaluate the targeted blockchain platforms, we have designed a simplemoney transfer applicationwheremoney/tokens
are exchanged between two parties in the blockchain network. The money transfer application is deployed in the blockchain
network. In case of Hyperledger Fabric, the application is deployed as a chaincode, while in Ethereum, we run the application
as a nodejs container that connects to Ethereum network using web3 framework to make transactions. In both the platforms, as
part of initialisation, we create user accounts - among who the money/token transfer takes place, setup balances in the accounts
and make the setup ready for transactions. In Ethereum, we use the existing methods to create accounts and setup balances. In
Hyperledger, the deployed chaincode has methods to create accounts, setup balances along with method to transfer money. The
function to transfer money is called sendMoney. In Ethereum we use the existing sendT ransaction method to transfer money
between accounts while a custom sendMoney function, as part of chaincode, is called to transfer balances in Hyperledger Fabric.
The following code snippets (Transaction code 1 and 2) detail the custom sendMoney function deployed in Hyperledger Fabric
and sendT ransaction method in Ethereum. For chaincode in Hyperledger Fabric, we have used the example chaincode given
by Hyperledger group, modified it according to our requirements. On top of it, scripts are written, which are executed from a
client node in Hyperledger Fabric network to make transactions repeatedly. Below, we present the code snippets for

1. Hyperledger Fabric: the sendMoney function, which is part of chaincodel and is used to make transactions, and a script
that is used for repeated transactions. The procedure is invokedm with appropriate input parameters.

2. Ethereum: A nodejs proceduren that is called to invoke multiple times the inbuilt token transfer method sendT ransaction.

We consider the following parameters to evaluate the targeted blockchain platforms:

1. Transaction Latency: This is the time taken to complete a set number say N = 100 transactions. Transaction latency is
measured differently in Hyperledger Fabric and Ethereum PoA platforms.

• In Hyperledger Fabric, this is the time taken to endorse and to commit a transaction to the ledger. We plot both time
to endorse and time to commit in our plots.

Transaction code 1 Code snippet to invoke the SendMoney function multiple times in Hyperledger Fabric
1: procedure SENDMONEY(Name, value, op) ⊳ Code snippet written in Go lang as part of Chaincode
2: txid ∶= APIstub.GetT xID();
3: compositeIndexName ∶= NameOpV alueT xID;
4: CompositeKey = APIstub.CreateCompositeKey(compositeIndexName, []stringname, op, V alue, txid)
5: APIstub.P utState(compositeKey, []byte0x00)
6: end procedure
7: procedure MANYUPDATES(Name, value, op, repetitions) ⊳ Script to Invoke the SendMoney for multiple transfers
8: for let i = 0; i < repetitions; i + + do
9: SENDMONEY(Name, value, op) ⊳ Chaincode invocation

10: end for
11: end procedure

lhttps://github.com/anirudhkabi/HLF/blob/master/chaincode/high-throughput.go
mInvocation: peer chaincode invoke -o orderer.example.com:7050 -C $CHANNEL_NAME -n $CHAINCODE_NAME -c {Args:[update,$1,$2,$3]}
nhttps://github.com/DSG-UPC/EthereumMeasurements

https://github.com/anirudhkabi/HLF/blob/master/chaincode/high-throughput.go
https://github.com/DSG-UPC/EthereumMeasurements
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Transaction code 2 Snippet for nodejs script calling SendTransaction function in Ethereum
1: procedure SENDTRANSACTION(nonce, repetitions, etℎerV alue, initSecond)
2: for let id = 0; id < repetitions; id + + do
3: nonce = nonce + 1;
4: times[id] = ;
5: times[id][′id′] = id;
6: times[id][′start′] = Date.now();
7: WEB3.ETH.SENDTRANSACTION(from: account, to: acc2, value: web3.utils.toWei(String(1)), gas: 3000000))

.on(’confirmation’, function(confirmationNumber, receipt)
8: if confirmationNumber == 0 then
9: times[id][′mindT ime′] = Date.now() − times[id][′start′];

10: console.log(times[id]);
11: end if
12: if confirmationNumber == 12 then
13: times[id][′completionT ime′] = Date.now() − times[id][′start′];
14: console.log(′ID ∶′ +id);
15: console.log(times[id])
16: end if
17: end for
18: return T ransactionReceipt
19: end procedure

• In Ethereum PoA, this is the total amount of time to execute, seal and confirm the transaction. We consider a total
of 12 confirmations as successful commit of a transaction15.

2. CPU and Memory Utilization: Load on CPU and memory is measured for nodes when idle and during transactions.

• In Hyperledger Fabric, CPU load and memory usage are measured for endorser, orderer and committing peers.
• In Ethereum PoA, CPU load and memory usage are measured for the sealer node and non sealer node to which the
transaction is fired to.

4.2 Hyperledger Fabric Setup
In our experiments, we deploy a HLF blockchain networko consisting of a single organizational entity. All the transactions
happen among the members of this single organization. The HLF components, namely peer (we deploy multiple instances of
this component), orderer, and client are deployed in different RPi3 boards connected to each other in QMPSU wireless mesh
network. We perform experiments by placing different Hyperledger Fabric components at different physical (RPi3) nodes and
by varying the number of peers from 1 to 4. We evaluate the setup in QMPSU network comparing transaction latency for 100
transactions fired in parallel when components of HLF are placed randomly in the network and in nodes with best connectivity
(according to BASP). For the best connectivity deployment, we also evaluate transaction latencies in HLF for a 2 peer setup
when the block size is varied from 10 to 100 transactions per block. Our experiments comprise of 5 runs (taken in different time
slots) and the presented results are averaged over all the runs.

4.2.1 Hyperledger Fabric Experimental Results
Table 1 lists the transaction completion time (referred to as Time-to-Commit (TCC)) for 100 transactions, initiated in parallel,
between the two peer nodes in the lab environment and in the QMPSU network respectively with block sizes ranging from 10
to 100 transactions per block. It can be observed that, as the block size increases, the transaction completion time increases in
the QMPSU network.

ohttps://github.com/anirudhkabi/HLF

https://github.com/anirudhkabi/HLF
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Block Size Time-to-Commit (Lab) Time-to-Commit (QMPSU) # of Txs
10 33.4 s 64.2 s 100
20 35.0 s 69.7 s 100
50 39.2 s 75.3 s 100
100 45.3 s 84.8 s 100

TABLE 1 Transaction delivery time (parallel transactions).

30.8%
26.3% 24% 24%

FIGURE 6 Transaction latency (QMPSU, HLF)

Transaction Latency: In Hyperledger Fabric, transaction latency is defined as the total time taken to endorse and to commit
a transaction to the ledger. Figure 6 shows the comparison of transaction latency observed for two different placements of HLF
ordering service. We measure transaction latency when the HLF ordering service is placed randomly in the network (Random)
and when it is placed at the node chosen with a heuristic that considers the node with higher bandwidth and degree centrality
(BASP)13. The results of Figure 6 are obtained when a client initiates 100 transactions sequentially. This Figure reveals that the
gain brought by BASP, for the case when we have one endorser in the network, is a 30.8% reduction. For the case when we have
four endorsers in the network, the gain of BASP over Random is 24% reduction. Further, we can deduct from Figure 6 that in
the QMPSU network it takes around 1 second for a single transaction to be appended to the distributed ledger.
Resource Consumption: Figure 7 shows CPU utilization by various components of the HLF network namely: an orderer, a

client and two peers (an endorser and a committer). CPU utilization of all nodes is monitored for a time period of 60 seconds
during which 100 transactions are fired in parallel (by the client) and all the transactions are completed. 100 parallel transac-
tions took around 40 seconds to complete. We chose to monitor the nodes for a time period of 60 seconds to show idle phase
usage and busy phase usage of each node. In the graph, transactions are initiated at the 11th second and all the transactions get
completed at 50th second. It can be observed that the endorser is the node with the highest CPU utilization whereas the orderer
utilizes the least of CPU. Figure 7 shows that, for 100 transactions initiated at the same time, the endorser’s maximum CPU
utilization reaches 96%. The maximum CPU utilization is 81% for the committer while it is 71% for the orderer. The reason
that the endorser has the highest CPU consumption, among other HLF components, is because of the chaincode execution at
the endorsing peer, which does not happen at the committer and the orderer.

In HLF, each component usually runs in it own Docker containerp. The chaincode container executes the chaincode for each
incoming transaction which is something that does not happen at the committer node. When multiple transactions take place in
parallel, concurrent execution of the chaincode happens for all transactions thus, in turn, increasing the load on the endorsing
peer. With 100 parallel transactions, we observe that the CPU load reaches 96% at the endorser. However, the load on each
endorser can be reduced by deploying multiple endorsers in the network. The load on different endorsers can be balanced by

phttps://www.docker.com/what-docker

https://www.docker.com/what-docker
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FIGURE 7 CPU and memory utilization (HLF)

designing a suitable endorsement policy and devising a strategy at the client to request endorsements from different set of
endorsers each time a transaction is initiated.
Similarly, memory usage is the highest by the endorser and the least by the orderer. Memory usage of committing peer falls

in between of endorsing peer and the orderer. At the orderer and the committing peers, memory usage remains almost the same
level between the idle phase and during transaction execution. Memory usage at the orderer mostly falls in the range of 57%-58%
while the memory usage at the committer is in the range of 57%-60%. At an endorsing peer the memory usage increases during
transaction execution as the execution of a chaincode also takes place at the same time. The memory usage by the endorser is
about 60% during the idle phase and reaches to a maximum of 65% during the chaincode execution.

4.3 Ethereum PoA Setup
In order to evaluate the Ethereum PoA platform, we construct a synthetic application as a cash (Ether) transfer application where
Ether token is transferred from one account to another. We create two accounts i.e., source and the target account, and cash
is transferred between accounts by calling sendTransaction, an inbuilt function available in Ethereum implementation geth to
transfer funds (in Ether) between two accounts. For Ethereum, Proof of Authority consensus mechanism Clique, implemented
in geth is used and experiments are performed with 1, 2 and 4 sealers/validators. The results of each experiment are averaged
over 5 independent runs.
We deploy an Ethereum PoA etwork with a blocktime of 5 seconds for our experiments as PoA consensus mechanism is

more suitable to permissioned blockchain networks than the default PoW consensus mechanism. There are two kinds of nodes
in a PoA network - Validators or Sealers, who sign and create new blocks; - Non-Validators or Clients, who do not have the
authority to create new blocks and are mostly deployed in the network as interface for users to connect to blockchain network
and submit transactions. We perform experiments in both lab and QMPSU for various configuration as listed below.
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• Baseline-lab setup: 2 validator nodes co-located in the same host (Minix Deviceq). Transactions are generated from
within the host, and sent to one of the validators through Inter-process communication (IPC). Experiments are performed
measuring transaction latency for 1, 10, 100, 1000 and 10000 transactions fired in parallel.

• Mesh-lab setup: In order to evaluate the effect of the mesh, we perform the same experiments of Baseline-lab setup, but
launching the transactions using WebSockets, from a powerful (Desktop machine) node that is located 2 (short) mesh
hops away from the Minix Device.

• QMPSU setup: We perform experiments in QMPSU in line with experiments performed for Hyperledger Fabric in
QMPSU. To mimic single organisation scenario of Hyperledger Fabric, we authorise only one sealor/validator account
and run multiple instances of the validator by varying number of validator instances from 1 to 4. We compare transaction
latency for 100 transactions fired in parallel when validator instances are placed randomly and when validator instances
are placed in RPi3 nodes with the BASP heuristic. We also vary number of transactions from 1 to 1000 and record trans-
action latency. Apart from transaction latency, we measure CPU load and memory usage of validator and non-validator
nodes when idle and busy.

4.3.1 Ethereum PoA Experimental Results
Transaction Latency: In Ethereum, transaction latency is measured in multiple ways. Intuitively, transaction latency is the time
between firing a transaction to the time it gets sealed. However, there is a significant probability that the mined block may not
end up in the chain due to forking. Therefore, as mentioned earlier, it is a standard practice to consider confirmation of next 12
blocks as finality for a transaction. In our experiments we measure both sealing time and completion time, see Figure 8, which
we define as the time from firing of transaction upon receiving the 12th confirmation, with the transaction under consideration
being part of the chain.

N/A

(a) Baseline (client and miner on the same host)

N/A

(b) Mesh (miner and client 3-4 network hops away)

FIGURE 8 Sealing and Completion Time for Baseline/centralized and Mesh/distributed environment (Eth.PoA).

As an exploratory study, before jumping into QMPSU, we setup an Ethereum PoA private network following the Baseline-lab
and Mesh-lab setups, measuring the sealing and completion time for 1, 10, 100, 1000 and 10000 transactions. Figures 8a and
8b compare the transaction latencies for the two different setups. As expected, the Baseline setup shows lower latency than the
Mesh one. Considering a blocktime of 5 seconds, then in normal situations we expect a sealingT ime ∈ [0, blockT ime] ≡ [0, 5]
and that completionT ime >= 12 ∗ blockT ime = 60. For both the sealing and completion time we observe that they show a
normal behaviour for up to 100 parallel transactions. However, at 1000 transactions, we already note increased delays in both

qhttp://minix.com.hk/
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the cases. It is interesting to point out here that an increase of 5 seconds can be translated as a delay for the next block to be
sealed. At 10000 transactions, the multinode setup is completely saturated and does not respond. We observed that the majority
of the transactions do not manage to get included in next 50 blocks and are dropped, which in turn causes a timeout of the
connector library, exiting with an exception. Even with the baseline setup, at 10000 transactions, there is a large delay in getting
the responses of block being sealed and confirmed. As a result, the rest of the experiments are performed with a maximum of
1000 parallel transactions.
After the exploratory study, we performed experiments in QMPSU, obtaining the Figures 9a and 9b, that show respectively the

sealing and completion time for 1, 10, 100 and 1000 transactions fired in parallel with 1, 2 and 4 validator instances. Considering
a blocktime of 5s and similarly to the exploratory experiments, Figure 9a shows that up to 100 transactions, all the transactions
are verified and sealed in 1 block. Beyond 100 transactions, the number of blocks needed to accommodate all transactions fired
increases beyond 3 blocks. In the case of 1000 transactions, that are accommodated in more than 3 blocks, the total sealing
time increases with more number of validator instances. The delay may be attributed to the latency generated by broadcasting
the pending transactions to different validator nodes, once the current validator node reaches the block gas limit and cannot
accommodate anymore transactions in the block. As far as the completion time is concerned, plotted in 9b, we observe a similar
behaviour to the sealing time. Between 1 and 100 parallel transactions fired, completion time is almost constant as empty blocks
are sealed irrespective of number of transactions fired earlier, while shows an increased value for 1, 000 transactions.

(a) Completion time with 1, 2 and 4 Miners (b) Mining time with 1, 2 and 4 Miners

FIGURE 9 Sealing and Completion time for 1, 2 and 4 Sealers. 1, 10, 100 and 1000 transactions used (QMPSU, Eth.PoA).

Placement: Figure 10a and Figure 10b depicts the sealing and completion time for different number of sealer nodes in the
network, when nodes are placed randomly and with the BASP heuristic respectively. The figures reveal that BASP outperforms
the Random placement when using up to 4 sealer nodes. Moreover, as the number of sealer node increases, the gain tends to
increase accordingly. For instance, when having up to 4 sealer nodes, Figure 10a shows that the gain brought by BASP over
random is 3 seconds which is 40% improvement. The same thing happens with completion time in Figure 10b, where the gain
brought by BASP over random is 12 seconds which is 26% of improvement.
These figures demonstrate the importance of the sealer node location in the network. In a challenging environment such as

wireless mesh network, the placement heuristics that are agnostic to the state of the underlying network may lead to important
inefficiencies. Our result demonstrates that placement of sealer nodes can become even more crucial when number of transaction
is higher (e.g., 1,000, 10,000 etc).
Resource Consumption: In order to understand the resource usage of the participating nodes, we measured CPU Load and

memory usage in sealer and non-sealer nodes when 100 and 1000 transactions are fired, as plotted in Figure 11. We record the
measurement from the time we fire transactions to the time the transactions are considered completed (i.e, 12 confirmations
in Ethereum). The procedure we follow here is that, we fire transactions to non-sealer node; non-sealer node broadcasts the
transactions to sealer node where it is sealed. We follow this strategy to get an idea of load generated by independent processes
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(a) Sealing Time for 100 Tx (BEST vs Random)
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26%

(b) Completion time for 100Tx (BEST vs. Random)

FIGURE 10 Sealing and Completion Time for 100 Transaction (BASP vs. Random) in (QMPSU, Eth.PoA)

Max: 22%

Max: 11.8%

Max: 400%

Max: 88%

FIGURE 11 CPU and Memory utilization with 100 and 1000 transactions (Eth.PoA)

like accepting transactions and sealing. We observe that when 1000 transactions are fired in parallel, the non-sealer node is
saturated heavily in all the 4 cores of the RPi3 board. Even with 100 transactions, the CPU load on non-sealer node is pretty
high. While the validation process loads the CPU only moderately for both 100 and 1000 transactions. It is also demonstrated
that the non-sealer has higher memory consumption compared to the sealer node in both cases. However, the maximummemory
usage is still below 20% and is not a bottleneck in the blockchain network. As expected, the sealing process, following a PoA
scheme, is not demanding in terms of resources. On the other hand, accepting transactions and forwarding them to the sealer
nodes, as the non-sealer node of our experiment does, seems to be very resourceful, and can saturate the node.
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4.4 Discussion
Hyperledger Fabric: As we observed in our experiments, in terms of resource consumption, the endorser nodes can prove to be
a bottleneck. We believe that this bottleneck is because of the execution of an additional chaincode container at each endorsing
node. In our current study we only considered one endorser node to study the resource utilization with a simple endorsement
policy encoded in the corresponding chaincode. It might get more complicated when we consider more than one endorser, and
more sophisticated endorsement policies. However, as discussed in the paper, if done right it can actually improve performance.
In addition to this, the actual distribution of endorsing peers in a production network, such as QMPSU, might also affect the
network performance (both in terms of CPU utilization and transaction latency). Therefore we advise caution when in designing
an endorsing policy that is also cognizant of the underlying network infrastructure (i.e, topology, capacity, performance, etc),
especially in the resource constrained nature of CMNs. A deployment strategy and an apt endorsement policy balancing the load
on various endorsers in the network can improve the performance of the blockchain network and allow scaling of the blockchain
network without forming a bottleneck. As far as the orderers are concerned, horizontal scaling by adding more nodes is possible,
nevertheless, this would need some sort of mechanism for syncing between instances. For instance, it is possible to have multiple
instances of ordering service nodes all connected to a single fault tolerant service (Kafka) that would do the ordering (crash
fault tolerant).
Ethereum PoA:The results presented earlier concerning Ethereum show that it can be used successfully as private permis-

sioned blockchain in a mesh environment, using PoA consensus. Nonetheless, there are various parameters to be adjusted and
bottlenecks that need to be discussed. Unlike HLF, in Ethereum PoA there is no clear horizontal scaling pattern. While having a
lot of sealers could balance the incoming transactions, the transaction throughput is largely affected by the hardware resources
like CPU and memory of the nodes who accept the transactions and less affected by the number of nodes . This, depending on
the frequency of transactions generated, can be a significant issue for mesh like environments, since the hardware used is usually
low-power/low-cost devices. Moreover, the broadcasting of the pending transactions between the sealers can become problem-
atic over non-stable mesh connections, especially between remote nodes, or nodes connected with lossy links. This situation
could also deteriorate by an increased number of nodes and small blocktimes, leading to higher frequency and higher number
of message exchanges between the sealers. On the other hand, these effects could be moderated by utilising smart placement
algorithms like BASP, which would play a significant role in avoiding network saturation, by placing the sealers in locations that
would minimise the overhead of the blockchain. Finally, while we deploy multiple clones of one sealer, other approaches are
possible, like having multiple sealer accounts, considering that a minimum ofN∕2+1 instances of them are always available16.

Despite some resource inefficiencies in the execution of chaincodes and smart contracts, we anticipate a gradual improvement
in future iterations of both software platforms in this regard. We, however, consider the observed performance and latency (in
the range of 1-2 minutes) acceptable for the problem at hand, which is of balancing and transferring payments from consumers
to providers that in practice can take from several minutes, hours or even days for every connectivity consumer and provider.
Further, we believe that in the case of community mesh networks a decentralized and trustless environment in conjunction
with tamper-evident record keeping in the form of a distributed ledger takes preference over performance. This is so that in
order for these networks to function seamlessly and in a mostly peer-to-peer but conflict-free scenario. Contrary to public and
open blockchains, private and permissioned distributed ledgers for this purpose have completely different scalability ranges. As
described in Section 3 and17, typical mesh access networks cover a city or neighbourhood, share one or two Internet gateways,
and have in the range of or below two hundred routers, with a relatively small number of servers where blockchain processes
can execute, in several servers provided by different participants to ensure trust and reliability. It becomes clear that automation
and irreversibility guarantees provided by blockchain brings down the latency of economic settlements from days and hours to
minuetes and seconds. Therefore we are of the view that economic compensation in the particular case of community networks
takes preference over scalability which is not the immediate pressing issue.

5 RELATEDWORK

There are works that explore aspects of howmesh networks can be combined with blockchain technologies to provide connectiv-
ity under an economic model in a decentralised manner involving the independent providers and consumers of a crowdsourced
ISP. In contrast to most of the works mentioned in this section, we specifically consider the implications of deploying the
blockchain paradigm to a, still in use, production environment such as that of CMNs.
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Comparison of Public and Private Blockchain Platforms: The work of Suporn et al.18 presents performance analy-
sis of Hyperledger Fabric and Ethereum as private blockchain platforms with varying number of transactions. They conduct
their experiments in Amazon AWS EC2 instances. Their assessment shows that Hyperledger Fabric consistently outperforms
Ethereum across all evaluation metrics such as execution time, latency and throughput. Further, they claim that both platforms
are still not competitive with current database systems in terms of performance when using high workloads. The work in19

discusses various consensus protocols used in blockchain and comparative analysis of Hyperledger Fabric and Ethereum. The
study20 compares the public blockchain with permissioned blockchain and discusses the trade-offs among decentralization, scal-
ability and security in the two approaches. Sousa et al.9 present the design, implementation and evaluation of a BFT ordering
service for Hyperledger Fabric based on the the BFT-SMART state machine replication/consensus library. Their results show
that Hyperledger Fabric with their ordering service can achieve up to ten thousand transactions per second and write a trans-
action irrevocably in the blockchain in half a second, even with peers distributed over different continents. The Blockbench21

is a framework for analyzing private blockchains. It serves as a fair means of comparison for different platforms and enables
deeper understanding of different system design choices. They use Blockbench to conduct comprehensive evaluation of three
major private blockchains: Ethereum, Parityr and Hyperledger Fabric. Their results demonstrate that these systems are still far
from replacing the current database systems in traditional data processing workloads. In contrast to most of the works men-
tioned in this section, we specifically consider the implications of deploying the blockchain paradigm to a, still in use, production
environment such as that of CMNs.
Payments in Mesh Networks using Blockchain: There are several projects in development that combine the payment in

mesh networks with blockchain. Althea Mesh22 provides last-mile connectivity for the Internet access. Althea allows routers
to pay each other for bandwidth using cryptocurrency payment channels. Nodes only pay neighbours for forwarding packets.
RightMesh23 is a software-based, ad hoc mobile mesh networking platform and protocol using blockchain technology and
RMESH tokens. RightMesh integrates into the Ethereum blockchain to provide unique identities for each node in the mesh.
AmmbrTech24 develops solutions that combine networking devices and software tools around a combination of digital identity,
local and global blockchain and distributed ledgers, wireless mesh networks, and artificial intelligence to self-adapt the system.
Off-Chain Payment Networks: Payment channels allow to establish a direct peer-to-peer payment between two parties such

that their individual transactions are not required to be written to the blockchain. The Lightning Network (LN)25 is a layer-
2 protocol built on top of the current Bitcoin protocol. The idea of such a protocol is to deploy an overlay network (using
payment channels) where off-chain payments can be made from node to node on a path of such an overlay without trusting any
of the nodes in the path. The work in26 proposes a more general technique for nodes to apply fees for forwarding payments in
LNs. Further, they propose a multipath routing payment scheme which is able to significantly reduce the fees paid by users.
Revive27 is a rebalancing scheme for payment channels that allows a user to utilize any other of his channels for rebalancing a
particular channel. The Raiden Network28 is an off-chain scaling solution, enabling near-instant, low-fee and scalable payments
in Ethereum. Sprites29 inspired by Raiden and Lightning Network, aims to minimize the worst-case collateral costs of indirect
off-chain payments. Bolt30 is a protocol that constructs anonymous payment channels between two mutually distrustful parties.
Their approach allow for secure, instantaneous and private payments that substantially reduce the storage burden on the payment
network.
Resource trading: Several studies provide economic analysis and designs for resource trading. Route Bazaar31 is a backward-

compatible system for flexible Internet connectivity. Inspired by the decentralised construction of trust in cryptocurrencies,
Route Bazaar uses a decentralised public ledger and cryptography to provide Autonomous Systems (ASes) with automatic means
to form, establish, and verify end-to-end connectivity agreements. Tycoon32 is a market based distributed resource allocation
system based on proportional share that uses auctions for resources, such as computing, storage or network traffic, that uses a
centralised bank component based on digitally signed receipts to attest payments, that can be used to claim access and usage of
resources later on. Request Network33 is a decentralised network that allows anyone to request a payment (a Request Invoice)
for which the recipient can pay in a secure way. All of the information is stored in a decentralised authentic ledger. Request can
be seen as a layer on top of Ethereum which allows requests for payments that satisfy a legal framework.

rhttps://www.parity.io/

https://www.parity.io/
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6 CONCLUSION

The missing ingredient for widespread adoption of decentralized access networks (such as community mesh access networks)
has always been the issue of economic sustainability. In this paper, we take on the issue of addressing trustworthy economic
sustainability by proposing the need for an economic substrate built using blockchain that can keep a record of the transactions
that keeps track of the contributions (of nodes, links, Internet gateways, maintenance), consumption of communication network’s
resources as its economic compensation in a transparent, decentralized and trusted manner. The evaluation of the Hyperledger
Fabric and Ethereum blockchain deployment in a real test network in a laboratory setup and a real productionmesh network gives
us an understanding of the performance, overhead, influence of the underlying network, and limitations of the two platforms. The
results show critical aspects that can be optimized in a Hyperledger Fabric and an Ethereum PoA local blockchain deployment,
in the perspective of decentralized networks, where several components can prove to be bottlenecks and therefore put a limiting
effect on the rate of economic transactions in a mesh network. Future work will expand the evaluation to a wider range of
hardware and network configurations considering real and synthetic transaction traces. We will also consider the influence of
the execution of non-trivial smart contracts, with a more realistic design of an endorsement policy (in the form of chaincode(s)).
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