Sparse Hypermatrix Cholesky: Customization for High Performance

José R. Herrero, Juan J. Navarro*

Abstract

Efficient execution of numerical algorithms requires adapting the code to the underlying execution platform. In this paper we show the process of fine-tuning our sparse Hypermatrix Cholesky factorization in order to exploit efficiently two important machine resources: processor and memory. Using the techniques we presented in previous papers we tune our code on a different platform. Then, we extend our work in two directions: first, we experiment with a variation of the ordering algorithm, and second, we reduce the data submatrix storage to be able to use larger submatrix sizes.

Keywords: Sparse Cholesky factorization, hypermatrix structure, small matrix library

1 Introduction

1.1 Hypermatrix representation of a sparse matrix

Sparse matrices are mostly composed of zeros but often have small dense blocks which have traditionally been exploited in order to improve performance [1]. Our approach uses a data structure based on a hypermatrix (HM) scheme [2, 3]. The matrix is partitioned recursively into blocks of different sizes. The HM structure consists of N levels of submatrices, where N is an arbitrary number. The top $N-1$ levels hold pointer matrices which point to the next lower level submatrices. Only the last (bottom) level holds data matrices. Data matrices are stored as dense matrices and operated on as such. Null pointers in pointer matrices indicate that the corresponding submatrix does not have any non-zero elements and is therefore unnecessary. Figure 1 shows a sparse matrix and a simple example of corresponding hypermatrix with 2 levels of pointers.

The main potential advantage of a HM structure over other sparse data structures, such as the Compressed Sparse Column format, is the ease of use of multilevel blocks to adapt the computation to the underlying memory hierarchy. However, the hypermatrix structure has an important disadvantage which can introduce a large overhead: the storage of and computation on zeros within data submatrices. This problem can arise either when a fixed partitioning is used or when supernodes are amalgamated. A commercial package known as PERMAS uses the hypermatrix structure [4]. It can solve very large systems out-of-core and can work in parallel. In [5] the authors reported that a variable size blocking was introduced to save storage and to speed the parallel execution. The results presented in this paper, however, correspond to a static partitioning of the matrix into blocks of fixed sizes.

1.2 Previous work

Our previous work on sparse Cholesky factorization of a symmetric positive definite matrix into a lower triangular factor L using the hypermatrix data structure was focused on the reduction of the overhead caused by the unnecessary operation on zeros which occurs when a hypermatrix is used. Approximately 90% of the sparse Cholesky factorization time comes from matrix multiplications. Thus, a large effort has...
have been devoted to perform such operations efficiently.

We developed a set of routines which can operate very efficiently on small matrices [6]. In this way, we can reduce the data submatrix size, reducing unnecessary operation on zeros, while keeping good performance. Using rectangular data matrices we adapt the storage to the intrinsic structure of sparse matrices.

A study of other techniques aimed at reducing the operation on zeros can be found in [7]. We showed that the use of windows within data submatrices and a 2D layout of data is necessary to improve performance. Figure 2 shows a dense window within a data submatrix.

We have 4 codes specialized in the multiplication of two matrices. The operation performed is $C = C - A \times B^t$. The appropriate routine is chosen at execution time depending on the windows involved in the operation. Their efficiency is different. These routines (from more to less efficient) are named: FULL, which uses the entire matrices; WIN1DC, that uses windows along the columns; WIN1DR, which uses windows along the rows; and WIN2D, that uses windows in both dimensions and is the slowest amongst all 4 codes.

In [9] we presented Intra-Block Amalgamation: we allow for zeros outside of windows but within data submatrices, i.e. we extend the windows if that means that a faster routine can be used. Figure 3 shows how we can extend a window both row and/or column-wise. In case a window is expanded in both directions, the resulting window matches the whole data submatrix. This action can reduce the number of times a slow matrix multiplication routine is used.

![Figure 2: A rectangular data submatrix and a window within it.](image)

![Figure 3: Data submatrix after applying both row and column-wise intra-block amalgamation.](image)

All our previous work was tested on a machine with a MIPS R10000 processor. In this paper we use a different machine which has an Intel Itanium2 processor.

1.3 Matrix characteristics

We have used several test matrices. All of them are sparse matrices corresponding to linear programming problems. QAP matrices come from Netlib [10] while others come from a variety of linear multicommodity network flow generators: A Patient Distribution System (PDS) [11], with instances taken from [12]; RMFGEN [13]; GRIDGEN [14]; TRIPARTITE [15]. Table 1 shows the characteristics of several matrices obtained from such linear programming problems. Matrices were ordered with METIS [16] and renumbered by an elimination tree postorder [17].

1.4 Contribution

In this paper we present an extension to our previous work on the optimization of a sparse Hypermatrix Cholesky factorization. We will first summarize the work we have done to adapt our code to a new platform with an Intel Itanium2 processor. Later, we study the effect of a different ordering of the sparse matrices which is more suitable for application on matrices arising from linear programming problems. Finally, we present a way to reduce the data submatrix storage, which allows us to try larger matrix sizes. We will present the performance obtained using four different data submatrix sizes.

2 Porting efficiency to a new platform

In this section we summarize the port of our application from a machine based on a MIPS R10000 process to a platform with an Intel Itanium2 processor. We
Table 1: Matrix characteristics: matrices ordered using METIS

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Dimension</th>
<th>NZs</th>
<th>NZs in L</th>
<th>Density of L</th>
<th>MFlops to factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIDGEN1</td>
<td>330430</td>
<td>3162757</td>
<td>1305869</td>
<td>0.002</td>
<td>278891</td>
</tr>
<tr>
<td>QAP8</td>
<td>912</td>
<td>14864</td>
<td>193228</td>
<td>0.463</td>
<td>63</td>
</tr>
<tr>
<td>QAP12</td>
<td>3192</td>
<td>77784</td>
<td>2091706</td>
<td>0.410</td>
<td>2228</td>
</tr>
<tr>
<td>QAP15</td>
<td>6330</td>
<td>192405</td>
<td>8755465</td>
<td>0.436</td>
<td>20454</td>
</tr>
<tr>
<td>RMFGEN1</td>
<td>25077</td>
<td>151557</td>
<td>6469394</td>
<td>0.016</td>
<td>6323</td>
</tr>
<tr>
<td>TRIPART1</td>
<td>4238</td>
<td>80846</td>
<td>1147857</td>
<td>0.127</td>
<td>511</td>
</tr>
<tr>
<td>TRIPART2</td>
<td>19781</td>
<td>400229</td>
<td>5917820</td>
<td>0.030</td>
<td>2926</td>
</tr>
<tr>
<td>TRIPART3</td>
<td>38881</td>
<td>973881</td>
<td>17806642</td>
<td>0.023</td>
<td>14058</td>
</tr>
<tr>
<td>TRIPART4</td>
<td>56869</td>
<td>2407504</td>
<td>76805463</td>
<td>0.047</td>
<td>187168</td>
</tr>
<tr>
<td>pds1</td>
<td>1561</td>
<td>12165</td>
<td>37339</td>
<td>0.030</td>
<td>1</td>
</tr>
<tr>
<td>pds10</td>
<td>18612</td>
<td>148038</td>
<td>3384640</td>
<td>0.019</td>
<td>2519</td>
</tr>
<tr>
<td>pds20</td>
<td>38726</td>
<td>319041</td>
<td>10739539</td>
<td>0.014</td>
<td>13128</td>
</tr>
<tr>
<td>pds30</td>
<td>57193</td>
<td>463732</td>
<td>18216426</td>
<td>0.011</td>
<td>26262</td>
</tr>
<tr>
<td>pds40</td>
<td>76771</td>
<td>629851</td>
<td>27672127</td>
<td>0.009</td>
<td>43807</td>
</tr>
<tr>
<td>pds50</td>
<td>95936</td>
<td>791087</td>
<td>36321636</td>
<td>0.007</td>
<td>61180</td>
</tr>
<tr>
<td>pds60</td>
<td>115312</td>
<td>956906</td>
<td>46377926</td>
<td>0.006</td>
<td>81447</td>
</tr>
<tr>
<td>pds70</td>
<td>133326</td>
<td>1100254</td>
<td>54795729</td>
<td>0.006</td>
<td>100023</td>
</tr>
<tr>
<td>pds80</td>
<td>149558</td>
<td>1216223</td>
<td>64148298</td>
<td>0.005</td>
<td>125002</td>
</tr>
<tr>
<td>pds90</td>
<td>164944</td>
<td>1320298</td>
<td>70140993</td>
<td>0.005</td>
<td>138765</td>
</tr>
</tbody>
</table>

address the optimization of the sparse Cholesky factorization based on a hypermatrix structure following several steps.

First we create our Small Matrix Library (SML) automatically as explained in [18]. The code is automatically optimized fixing as many parameters as possible at compilation time. We use the best compiler at hand to compile several variants of code. Then, we execute them, and select the one providing best performance. This allows us to create efficient routines which work on small matrices of fixed size. These matrices fit in the lowest level cache. In this way we obtain efficient inner kernels which can exploit efficiently the processor resources. The use of small matrices allows for the reduction of the number of zeros stored within data submatrices.

We have used 4×32 as data submatrix dimensions since these were the ones providing best performance on the R10000. Later in this paper we will present the results obtained with other matrix dimensions. As we mentioned in section 1.2 we use windows within data submatrices since they have proved effective in reducing both the storage of and operation on zero elements.

Afterwards, we experiment with different intra-block amalgamation values. As an example, figure 4 shows the performance obtained using several values of intra-block amalgamation on the hypermatrix Cholesky factorization of matrix pds20 on an Itanium2. Each curve corresponds to one value of amalgamation along the rows. The curve at the top (amr=3) corresponds to the largest amalgamation threshold along the rows: three, for submatrices consisting of four rows. The one at the bottom corresponds to the case where this type of amalgamation is disabled (amr=0). We must note that we report Effective MFlops. They refer to the number of useful floating point operations (#flops) performed per second. Although the time includes the operations performed on zeros, this metrics excludes nonproductive operations on zeros performed by the HM Cholesky algorithm when data submatrices contain such zeros. Thus,

$$\text{Effective MFlops} = \frac{\#\text{flops(excluding operations on zeros)} \cdot 10^{-6}}{\text{Time (including operations on zeros)}}$$

On the Itanium2 and using our matrix test suite, the worst performance is obtained when no amalgamation is done along the rows (amr=0). As we allow increasing values of the intra-block amalgamation along the rows the overall performance increases. The best performance for this matrix dimensions is obtained when amalgamation along the rows is three. This means that, for data submatrices of size 4×32, we will use no windows along the rows. This suggests that a larger number of rows could provide improved performance. We will analyze this issue in section 4. As we move right on the curves, we observe the performance obtained with increasing values of amalgamation threshold along the columns. The difference is often low, but
the best results are obtained with values ranging from six to ten.

Figure 4: Sparse HM Cholesky on an Intel Itanium2: Performance obtained with different values of intra-block amalgamation on submatrices of size 4 × 32 on matrix pds20.

The threshold values providing best performance on the R10000 were different: one on the rows and five on the columns. The reason for this is the different relative performance of the matrix multiplication routines. The ability of one compiler to generate efficient code for routines which take windows into account can be different from its aptitudes when dealing with routines which do not use windows at all. And these capabilities can be different from those of the compiler found on another platform. As a consequence we get different optimal values for the intra-block amalgamation thresholds on each platform.

3 Sparse matrix reordering

Working with matrices which arise in linear programming problems we may use sparse matrix ordering algorithms specially targeted for this problems. The METIS [16] sparse matrix ordering package offers some options which the user can specify to change the default ordering parameters. Following the suggestions found in its manual we have experimented with values which can potentially provide improved orderings for sparse matrices coming from linear programming problems. There are eight possible parameters. We skip the details of these parameters for brevity. However, for the sake of completeness, we include the values we have used: 1, 3, 1, 1, 0, 3, 60, and 5.

Using this configuration usually produces better sparse matrix orderings than the default configuration for the type of problems we are dealing with. This results in faster sparse Cholesky numerical factorization. However, this comes at the expense of a larger ordering process which incurs in a larger ordering time. We have measured both the ordering and numerical factorization time obtained using the two configurations of METIS discussed above. We must take into account that Interior Point Methods (IPM), i.e. the methods which use the sparse Cholesky factorization on linear programming problems have an iterative nature. In each iteration a sparse Cholesky factorization is performed on matrices with different data but the very same structure. Thus, the ordering process can be performed only once, while the numerical factorization is repeated many times on different data. Until now, we have been using METIS default configuration. To evaluate the potential for the new ordering parameters we have measured the number of iterations necessary to amortize the cost of the improved matrix reordering. Figure 5 presents the number of iterations after which the specific ordering starts to be advantageous. We can see that in many cases the benefits are almost immediate. Consequently, in the rest of this paper we will present results using the modified ordering process.

Figure 5: Number of iterations necessary to amortize cost of improved ordering.

4 Data submatrix size

In section 2 we showed that on an Intel Itanium2 and using data submatrices of size 4 × 32 the optimal threshold for amalgamation in the rows was three. This suggests that using data submatrices with a larger number of rows should be tried. However, the
larger the blocks, the more likely it is that they contain zeros. As we have commented in the introduction and have discussed in previous papers, the presence of zero values within data submatrices causes some drawbacks. Obviously, the computation on such null elements is completely unproductive. However, we allow them as long as operating on extra elements allows us to do such operations faster. On the other hand, a different aspect is the increase in memory space requirements with respect to any storage scheme which keeps only the nonzero values. Next, we present the way in which we can avoid some of this additional storage.

4.1 Data submatrix storage

As we mentioned in section 1.2, we use windows to reduce the effect of zeros in the computations. However, we still keep the zeros outside of the window. Figure 6 shows two data submatrices stored contiguously. Even when each submatrix has a window we store the whole data submatrix as a dense matrix.

![Figure 6: Data submatrices before compression.](image)

However, we could avoid storing zeros outside of the window, i.e. just keep the window as a reduced dense matrix. This approach would reduce storage but has a drawback: by the time we need to perform the operations we need to either uncompress the data submatrix or reckon the adequate indices for a given operation. This could have a performance penalty for the numerical factorization. To avoid such overhead we store data submatrices as shown in figure 7.

We do not store zeros in the columns to the left and right of the window. However, we do keep zeros above and/or underneath such window. We do this for two reasons: first, to be able to use our routines in the SML which have all leading dimensions fixed at compilation time (we use Fortran, which implies column-wise storage of data submatrices); second, to avoid extra calculations of the row indices. In order to avoid any extra calculations of column indices, we keep pointers to an address which would be the initial address of the data submatrix if we were keeping zero columns on the left part of the data submatrix. Thus, if the distance from the initial address of a submatrix and its window is d_x we keep a pointer to the initial address of the window with d_x subtracted from it. This pointers are kept in the last level of pointers in the hypermatrix. Thus, when the numerical factorization takes place, we can take advantage of performing dense operations on data submatrices, i.e. use our efficient routines working on small matrices and avoid complex calculation of indices. Note that in the presence of windows, we will never access the zero columns to the left or right of a window, regardless of having them stored or not.

Figure 8 presents the savings in memory space obtained by this method compared to storing the whole data submatrices of size 4×32. We can observe that the reduction in memory space is substantial for all matrices.

![Figure 8: HM structure: reduction in space after submatrix compression.](image)
4.2 Larger data submatrices: performance

The reduction in memory space allows us to experiment with larger matrix sizes (except on the largest matrix in our test suite: GRIDGEN1). Figure 9 presents the variation in execution time when the number of rows per data submatrix was increased to 8, 16 and 32. In almost all cases the execution time increased. Only matrices of the TRIPARTITE family benefitted from the use of larger submatrices.

Figure 9: Sparse HM Cholesky: variation in execution time for each submatrix size relative to size 4 × 32.

We must note that the performance obtained with matrices of size 8 × 32 is worse that that obtained with submatrices of size 16 × 32. The reason for this is the relative performance of the routines which work on each matrix size. The one with larger impact on the overall performance of the sparse hypermatrix Cholesky factorization is the one with fixed matrix dimensions and loop trip counts. The corresponding routine for each matrix size obtains the peak performance shown in table 2. We can observe that the efficiency of the routine working on matrices with four rows is similar to the one which works on matrices with eight rows. However, the overhead, in terms of additional zeros, is much larger for the latter. This explains their relative performance. However, the improved performance of the matrix multiplication routine when matrices have 16 rows can pay off. Similarly to the comparison between codes with eight rows and four, using matrices with 32 rows produces a performance drop with respect to the usage of data submatrices with 16 rows.

<table>
<thead>
<tr>
<th>Submatrix Size</th>
<th>Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × 32</td>
<td>4005</td>
</tr>
<tr>
<td>8 × 32</td>
<td>4080</td>
</tr>
<tr>
<td>16 × 32</td>
<td>4488</td>
</tr>
<tr>
<td>32 × 32</td>
<td>4401</td>
</tr>
</tbody>
</table>

Table 2: Performance of the $C = C - A \times B^T$ matrix multiplication routine for each submatrix size.

5 Conclusions and Future Work

The efficient execution of a program requires the configuration of the software to adapt it to the problem being solved and the machine used for finding a solution. We have shown the way in which we can tune our sparse hypermatrix Cholesky factorization code for high performance on a new platform. We have seen that the optimal parameters can be different for each problem type and platform. Thus, we need to adapt the code in search for performance.

We want to improve the performance of our code further. We believe that some directions for further improvement can be: modify our sparse hypermatrix Cholesky factorization to have data submatrices accessed with stride one by operating on an upper triangular matrix (U) rather than the lower triangle (L); allow for a new data storage within hypermatrices: use supernodes to store data submatrices in order to reduce the number of non productive operations performed on zeros. We also want to partition the matrix dynamically taking into account the information of the elimination tree. This will prepare the resulting hypermatrix for parallel Cholesky factorization, which we plan to implement in the future.

References

