
Reducing Wire Delay Penalty through Value Prediction

Joan-Manuel Parcerisa and Antonio González
Dept. d’Arquitectura de Computadors, Universitat Politècnica de Catalunya

c/. Jordi Girona, 1-3 Mòdul C6
08034 Barcelona, Spain

{jmanel,antonio}@ac.upc.es

this work we will focus on dynamic mechanisms for parti-
Abstract

In this work we show that value prediction can be used
to avoid the penalty of long wire delays by predicting the
data that is communicated through these long wires and
validating the prediction locally where the value is pro-
duced. Only in the case of misprediction, the long wire de-
lay is experienced.

We apply this concept to a clustered microarchitecture
in order to reduce inter-cluster communication. The pre-
dictability of values provides the dynamic instruction par-
titioning hardware with less constraints to optimize the
trade-off between communication requirements and work-
load balance, which is the most critical issue of the parti-
tioning scheme. We show that value prediction reduces the
penalties caused by inter-cluster communication by 18%
on average for a realistic implementation of a 4-cluster mi-
croarchitecture.

1. Introduction

Recent studies point out that two major problems for
scaling-up current superscalar microarchitectures will be
the growing impact of wire delays [1, 2, 13], and the in-
creasing complexity of some critical components, such as
the issue logic, the bypass, the register file and the rename
logic [16], since they may have a direct influence on the
clock cycle time.

One of the proposed solutions to this problem is based
on clustering. In a clustered microarchitecture some of the
critical components are partitioned into simpler structures,
and the impact of wire delays is reduced as far as signals
are kept local within the clusters. In a clustered architec-
ture, deciding which instructions are executed in each clus-
ter becomes a key issue. We will refer to this task as code
partitioning. A code partitioning scheme determines how
the dynamic instruction stream is split among the different
clusters. Data dependences among instructions in different
partitions correspond to inter-cluster communications,
which use long wires and have a high associated latency. In

tioning the instruction stream, implemented through a
small hardware that steers instructions to clusters, the steer-
ing logic.

Minimizing the impact of inter-cluster communication
delays is one of the main objectives of any code partition-
ing scheme. The solution that we propose in this work is to
eliminate data dependences that cross the partition bound-
aries by predicting the values that flow among them. Value
prediction has been largely investigated in the context of
superscalar processors, and it is not our purpose to design
another predictor but to investigate its potential to reduce
slow inter-cluster communications on a clustered architec-
ture, and to provide a new source of performance improve-
ments. In this paper we show that value prediction can sig-
nificantly improve the performance of the steering logic by
providing a less dense data dependence graph which results
in less communication requirements and better opportuni-
ties to balance the workload.

It is known that the IPC of a clustered architecture is
lower than that of an equivalent centralized organization
without the inter-cluster communication delays. It is also
expected that value prediction may increase the IPC in both
cases. However, we show that the clustered architecture
benefits from value prediction more than a centralized one,
since value prediction removes some inter-cluster commu-
nications. In particular, we show that the IPC degradation
caused by inter-cluster communications can be reduced by
18% through a simple value prediction scheme when the
steering logic is designed to take advantage of the value
predictor.

The rest of this paper is organized as follows. Section
2 presents the assumed clustered architecture. Section 3
presents the partitioning heuristic implemented by the
steering logic, and its specific adaptations to take advan-
tage of value prediction, and provides a performance eval-
uation. In Section 4, a sensitivity analysis regarding com-
munication latency, communication bandwidth and predic-
tor table size is performed. Section 5 reviews other related

work. And finally, the main conclusions are summarized in
Section 6.

2. Microarchitecture

The target processor microarchitecture is a clustered
implementation of an 8-way out-of-order issue superscalar
processor with a 6 stage pipeline (fetch, decode, issue, ex-
ecute, writeback and commit). The processor front-end
(fetch and decode stages) is a centralized structure, and we
assume that it has an aggressive instruction fetch mecha-
nism to stress the instruction issue and execution sub-
systems. The processor core is divided into N homoge-
neous clusters: each cluster has its own instruction queue,
a physical register file, a set of functional units, and the cor-
responding data bypasses among these functional units. We
experiment with several configurations (targeting different
technologies and clock rates) having 1, 2 and 4 clusters.
While the register file access time and issue time are as-
sumed to be constant in all cases, structure sizes are scaled
down with the degree of clustering. Therefore, register files
have respectively 128, 80 and 56 physical registers per
cluster, and instruction queue lengths are 64, 32 and 16 en-
tries. The reorder buffer length (128 entries), the total num-
ber of functional units (8), and the total issue width (8) is
kept constant through all the configurations. The main ar-
chitectural parameters are described in Section 2.4.

Local bypasses within a cluster are responsible for for-
warding result values produced in the cluster to the inputs
of the functional units in the same cluster. A local bypass
takes 0 cycles, i.e. a value produced in cycle i can be an in-
put of a local functional unit in cycle i+1. Inter-cluster by-
passes are responsible for forwarding values among func-
tional units of different clusters. Since inter-cluster bypass-
es require long wires, they will likely take several cycles in
future technologies [1]. Therefore, we have assumed a one-
cycle latency for inter-cluster bypasses in the basic config-
urations, although we also evaluate the effects of longer la-
tencies. Latency is not the only penalty of inter-cluster
communications. Also bandwidth is relevant, since it di-
rectly affects the number of register file write ports, and the
complexity of the bypass logic. We first assume an un-
bounded number of interconnection paths in order to iso-
late our experiments from the effect of possible bandwidth
bottlenecks, and then we evaluate the effects of having a
limited inter-cluster communication bandwidth.

2.1. Handling register copies

In a processor with N clusters, instructions are re-
named at the decode stage, by means of a register map table
with N fields per logical register, that allows up to N differ-
ent mappings of the same register. An additional bit per

field indicates whether the mapping is valid and if so, it
points to a physical register in the corresponding cluster.
All logical registers must have at least one valid mapping.
Each cluster has a free pool of physical registers from
where they are allocated when needed.

When an instruction I1 is decoded (see Figure 1(a))

Figure 1. Example of renaming 3 instructions. I2
requires to copy Rx from cluster n to m

P01

1 01

0 0

0

1 P5

P0 P1

Rx

Ra
0 001 P2Rb

0

1 01

0 1

0

0

P0 P1

Rx

Ra
0 001 P2Rb

P7

1

1 01

0 1

0

0

P0 P1

Rx

Ra
1 000 P3Rb

P7 P2

1

1 01

0 0

0

0

P0 P1

Rx

Ra
1 000 P3Rb

P4

n=1 m=20 3
free lists map table

Initial state

(a) After rename I1= Rx←Ra I1: P7←P0 (cluster n)

(b) After rename I2= Rb←Rx

(c) After rename I3= Rx←Ra

I1: P7←P0 (cluster n)

I1: P7 ← P0 (cluster n)

copy: P2m←P7 (cluster n)
I2: P3←P2 (cluster m)

copy: P2m ← P7 (cluster n)
I2: P3 ← P2 (cluster m)
I3: P4 ← P1 (cluster m)

P7 P2
P3
P4

•
•

••
•

•

P2
P3
P4

•
•

•

P4

•
•

•

0 1 2 3

,
and it is assigned to cluster n by the steering logic, its
source operands are renamed by looking at the field n of the
map table. If the instruction has a destination register Rx, a
new free physical register is allocated from the free-list of
cluster n, the new mapping is written in the field n of the
map table, and the other fields are set invalid, to denote that
Rx is not currently mapped to any physical register in these
clusters.

Let us assume that a subsequent dependent instruction
I2, that reads register Rx, is decoded and steered to cluster
m, different from n (see Figure 1(b)). When I2 is renamed,
the field m of the map table entry for register Rx is found
invalid. Normal instructions are not allowed to access the
register files of remote clusters. Instead, they require re-
mote operands to be copied from one register file to another
by means of special copy instructions generated on demand
during the renaming stage. Therefore, in this example a

new physical register is allocated in cluster m, to store the
copy of register Rx for future reuse, and its mapping is
written in the field m of the map table entry for Rx. This
field becomes valid, and its mapping is used to rename the
source operand of I2. Then, a copy instruction is dispatched
to cluster n. This instruction will forward the value of the
physical register in cluster n to the physical register in clus-
ter m. This copy instruction will be handled by the issue
logic as any other instruction, i.e., it will be executed once
its source operand and the needed resources are available.

Note that during the renaming of an instruction, just
one physical register for its destination register is allocated.
Additional physical registers to store copies of it in other
clusters are only allocated on demand if they are required
by subsequent instructions that do not execute in the same
cluster. All these physical registers will be freed by the first
subsequent instruction that writes to the same logical regis-
ter, when it is committed (see instruction I3, in Figure 1(c)).
This scheme requires some degree of register replication
which dynamically adapts to the program requirements and
is much lower than replicating the whole register file. Com-
pared with a full replication scheme, it has also less com-
munication requirements and thus, less inter-cluster bypass
paths and less register file write ports.

If the processor has a limited number of inter-cluster
bypass paths, they must be reserved by the issue mecha-
nism like any other resource. Copy instructions provide a
simple mechanism to allocate the required bypasses and
schedule inter-cluster communications. They also provide
a simple method for precise state recovery, since copy in-
structions are inserted in the reorder buffer like normal in-
structions. However, since a copy instruction makes the de-
pendence chain one node longer, it increases by one cycle
the total effective latency between the producer and the re-
mote dependent instruction (in addition to the bus latency).
A particular implementation could optimize this, either by
shortening the tags propagation delay between clusters or
by implementing specific hardware that avoids generating
copy instructions. However, we have not assumed any of
these optimizations in this work.

2.2. Value prediction

The microarchitecture implements a stride value pre-
dictor [8, 9, 19] that predicts the source operands of the in-
structions. There is a value prediction table indexed by the
PC and the operand order (left/right). We first assume a
very large table (128K entries) to isolate the results from
the effects of a limited table size, and we later evaluate the
impact of a table with sizes ranging from 1K to 16K entries.
Each entry contains the last value, the last observed stride
and a 2-bit counter that assigns confidence to the predic-
tion. Since each prediction involves a table access and an

addition, we assume that value predictions are available 1
cycle after the fetch, i.e. at the decode stage. Table updates
are done at decode time.

When a source operand is not yet available at decode
time, and its predicted value is confident (the counter value
is greater than 1), the instruction is dispatched speculative-
ly and may use the predicted value. The instruction that will
produce this value is identified, and it is assigned the task
of verifying that its output matches the prediction. The ver-
ification occurs during the writeback stage of the producer
instruction, and it takes one cycle. If it fails, the dependent
misspeculated instruction is invalidated and reissued.

We have assumed a selective invalidation and reissue
mechanism [17], i.e. after the mispredicted instruction is
reissued and executed, a new value is produced and propa-
gated to dependent instructions, which in turn reissue, and
so on. Only the instructions that depend on the mispredict-
ed instruction are invalidated. The mechanism is in fact the
existing issue mechanism, and therefore we have assumed
no additional penalty for each instruction restart.

For a clustered architecture, this speculation procedure
is further extended, in order to reduce inter-cluster commu-
nications. The extension apply to the case when a source
operand is not currently mapped on the cluster where the
instruction is being dispatched. In this case, the operand is
predicted regardless of whether it is available, the instruc-
tion is dispatched speculatively, and a special verification-
copy instruction is dispatched to the cluster where the op-
erand is produced. When issued, the verification-copy
compares locally the operand with the predicted value, and
just in case of mismatch, it forwards the correct value
through an inter-cluster bypass, and the remote misspecu-
lated instruction is reissued.

2.3. Steering logic

Code partitioning can be done at compile time (static)
or at run time (dynamic). The first method relies on the
compiler, which allocates each static instruction to a clus-
ter, while the second method is based on a specialized hard-
ware that decides where to distribute each dynamic instruc-
tion. The main advantage of a static partitioning is that it re-
quires minimal hardware support, but its downside is that it
requires to recompile the applications because it extends
the ISA for encoding the steering information. Further-
more, it will require to recompile for each new microarchi-
tecture generation that changes the number of clusters.

In contrast, a dynamic partitioning method does not re-
quire to recompile, because it makes clustering transparent
to the compiler. In addition, the information used by the dy-
namic steering logic (workload balance, data dependences)
is obtained directly from the actual pipeline state, rather
than estimations of the compiler. Therefore, a dynamic

steering scheme is more effective than a static approach be-
cause it is more adaptable to the actual processor state. This
work focuses on this type of steering.

In order to maximize performance, the dynamic steer-
ing logic must address two main goals: to minimize inter-
cluster communications (or their associated penalties) and
to maximize the workload balance.

On one hand, inter-cluster communications introduce
delays between dependent instructions, which may result in
a performance loss if they stay in the critical path of execu-
tion. Determining whether a communication is critical is a
hard problem, therefore a more simple goal for the steering
heuristic is to minimize the number of communications.

On the other hand, when there are more ready instruc-
tions in a cluster than functional units to execute them, the
excess of instructions are forced to wait, incurring an addi-
tional delay. If at the same time, another cluster has idle
functional units, this additional delay would have been
avoided if the steering logic had sent some instructions to a
different cluster. We refer to this situation as a workload
imbalance among clusters, and since it may potentially de-
grade the performance, a major goal of the steering logic is
to prevent it from happening.

Intuitively, both goals (reducing communications and
balancing workload) are sometimes conflicting, and there-
fore a good steering algorithm must find the optimal trade-
off between them. We outline below how these two issues
are addressed by the steering logic from a conceptual
standpoint. Particular steering techniques are defined in
Section 3

2.3.1. Communication. The valid bit associated to each
field of the map table indicates whether the logical register
may be directly read in the corresponding cluster without
requiring a communication. Therefore, the steering logic
uses this information to minimize communications by
choosing a cluster where all or most of the source operands
of an instruction are currently mapped. In some cases,
when an operand is mapped in more than one cluster due to
previously dispatched copy instructions, but the value is
not yet available, the choice of clusters should be narrowed
to the cluster where the value will be available sooner, to
avoid the instruction being needlessly delayed by a com-
munication.

2.3.2. Workload balance. To improve the workload bal-
ance, the steering logic must detect when there is a work-
load imbalance and how much unbalanced it is, and must
also determine which is the least loaded cluster. There are
many alternatives to determine at run-time the individual
workloads of the clusters and their relative workload im-
balance. In other words, there are several figures that can
be used to measure these features. From the description

given above, we intuitively define the workload imbalance
at a given instant of time as the total number of ready in-
structions that cannot issue, due to having exceeded the is-
sue width in their respective clusters, but could have issued
in other clusters since they have idle functional units. This
figure (we will refer to it as metric NREADY), is what we
report in our experiments as “workload imbalance”, be-
cause it corresponds to our definition. However, we also
experimented several other imbalance figures to guide the
steering decisions, and found the following scheme (we
will refer to it as metric DCOUNT) to give the best perfor-
mance:

• The processor has a signed counter in each of the N clus-
ters that measures its workload. Its value is initially zero,
and it is updated in the following way: for every instruc-
tion dispatched to a cluster, the corresponding counter in
that cluster is increased by N-1, while the other N-1
counters are decreased by 1 (i.e. the sum of the counters
is kept always zero). Therefore, the value stored in the
counter of a given cluster is N times the difference be-
tween the total number of instructions dispatched to that
cluster and the average number of instructions dis-
patched per cluster. The workload imbalance is calculat-
ed as the maximum absolute value of the workload
counters. Note also that in the case of two clusters, a sin-
gle counter will suffice.

The NREADY figure matches more exactly our defi-
nition of workload balance. However, when it is used by
the steering logic, the actions taken to compensate a work-
load imbalance (sending instructions to the least loaded
cluster) may not update immediately the NREADY figure,
if some of the steered instructions are not ready. When this
occurs, the corrective action may result disproportionate,
and cause an imbalance in another direction or some un-
necessary inter-cluster communications. This does not hap-
pen with the DCOUNT figure, since it varies instantly and
in proportion to the steering decisions, which allows the
steering logic to gauge more accurately the actions to com-
pensate a workload imbalance. Thus, the steering logic
uses the DCOUNT figure to determine balancing actions
and we use the NREADY figure to measure and report
workload balance.

2.4. Experimental framework

We perform our microarchitectural timing simulations
with a modified version of the SimpleScalar tool set [3],
version 3.0. It was extended to include register renaming
through a physical register file, instruction queues (sepa-
rate integer and FP), stride value prediction, steering logic,
and a clustered processor core.

Three different configurations were simulated, having
1, 2 and 4 clusters respectively. Each was simulated with
and without value prediction. The total issue width, number

of functional units, and reorder buffer length was kept con-
stant along the configurations while the sizes of register
files and instruction queues were scaled down with the
number of clusters. The most relevant architecture param-
eters are detailed in Table 1.

Table 1. Main architecture parameters, for configurations with 1, 2 and 4 clusters

Parameter 1 Cluster config. 2 Clusters config. 4 Clusters config.

Fetch, decode & retire width 8 instructions
Branch Predictor Combined predictor of 1K entries with a Gshare with 64K 2-bit counters, 16 bit global history, and a bimodal

predictor of 2K entries with 2-bit counters.
ROB size 128
Instruction queue size 64 32 16
Functional units 8 int (4 include mul/div)

4 fp (2 include fp mul/div)
4 int (2 include mul/div)
2 fp (include fp mul/div)

2 int (1 include mul/div)
1 fp (includes fp mul/div)

Issue width 8 int/ 4 fp 4 int/ 2 fp 2 int/ 1 fp
Out-of-order issue. Loads may execute when prior store addresses are known

Communications 1-cycle latency. Communications consume issue width and instruction queue entries
Register file sizes 128 80 56
I-cache L1 64KB, 2-way set-associative. 32 byte lines, 1 cycle hit time, 6 cycle miss penalty
D-cache L1 64KB, 2-way set-associative. 32 byte lines, 1 cycle hit time, 6 cycle miss penalty, 3 R/W ports
I/D-cache L2 256 KB, 4-way set associative, 64 byte lines, 6 cycle hit time.
Memory 8 bytes bus bandwidth to main memory, 18 cycles first chunk, 2 cycles interchunk.

We simulate all Mediabench benchmark programs
[14, 12], (except for Pegwit, which could not be compiled).
We chose this benchmark suite because they are represen-
tative of modern multimedia applications, which is a grow-
ing segment of the commercial workloads. In addition, they
exhibit a quite high ILP, which makes them suitable for
testing a wide issue superscalar architecture like the one we
present here. Table 2

Table 2. The Mediabench benchmark suite1

program input instr. count
(millions)

description

cjpeg testimg.ppm 18.8 image
djpeg testimg.jpg 6.0 image
epicdec test_image.pgm.E 11.1 image
epicenc test_image.pgm 70.6 image
g721dec clinton.g721 421.1 audio
g721enc clinton.pcm 440.6 audio
ghostscript tiger.ps 899.5 PS interpreter
gsmdec clinton.pcm.gsm 115.1 audio
gsmenc clinton.pcm 307.1 audio
mesamipmap m.ppm 75.2 3D graphics
mesaosdemo o.ppm 29.7 3D graphics
mesatextgen t.ppm 129.4 3D graphics
mpeg2dec test.m2v 12.6 video
mpeg2enc test.par 222.0 video
pgpdec pgptext.pgp 108.6 encryption
pgpenc pgptest.plain 130.6 encryption
rasta ex5_c1.wav 26.4 audio
rawcaudio clinton.pcm 8.7 audio
rawdaudio clinton.adpcm 7.1 audio

(1) Many program names are renamed for convenience

 lists briefly program input data and

run lengths. All the benchmarks were compiled for the Al-
pha AXP using Compaq’s C compiler with the -O4 optimi-
zation level, and they were run till completion.

We define a new metric to evaluate the performance of
a clustered configuration relative to that of a centralized
one, with similar characteristics: the normalized N-clusters
IPC Ratio (IPCRN for short) is the quotient IPCN-clusters/
IPC1-cluster. It indicates the IPC degradation caused by in-
ter-cluster communication delays on a clustered architec-
ture, and its maximum value is 1. This metric is useful to
evaluate the impact of a particular technique (e.g. value
prediction) on a clustered architecture, by comparing the
IPCR obtained with and without implementing the tech-
nique. An IPCR increase would indicate that the technique
produces higher IPC improvements in the clustered archi-
tecture than in the centralized one, thus measuring the ben-
efits that are exclusive to the clustered architecture, isolat-
ed from other more general improvements that affect both
configurations.

3. A steering scheme for value prediction

In this section, we first introduce a steering scheme
that is very effective but does not include any technique to
leverage value prediction. Then we present a steering
mechanism that exploits value prediction as a way to re-
duce communication requirements.

3.1. The baseline steering algorithm

We have evaluated several steering strategies de-
scribed in previous works [4, 5], and variations of them. Fi-
nally, the best performance was obtained with an enhanced
version of the “Advanced RMBS” heuristic [4], general-
ized for an arbitrary number of clusters, which will be the
Baseline scheme considered in this paper. This algorithm

applies the criteria discussed above in the following way:
in most cases, as a primary rule, it gives the highest priority
to the reduction of communication penalties, and as a sec-
ond rule, it tries to improve the workload balance. Howev-
er, in some cases, when the workload imbalance is consid-
ered too high, the balance criterion takes precedence. The
algorithm is described next, in more detail.

1. If the workload imbalance is higher than a given
threshold, the current instruction is sent to the least
loaded cluster.

2. Else, the clusters that will cause minimum communi-
cation penalties are identified:

2.1. If any source operand is not available at dis-
patch time, select the cluster(s) where the pend-
ing operand(s) are to be produced.

2.2. If all source operands are available, select the
clusters that have the greatest number of oper-
ands currently mapped.

2.3. If it has no source operands, select all clusters.

3. Finally, choose the least loaded cluster among those
selected in step 2.
The threshold mentioned in rule 1 was set experimen-

tally to DCOUNT=32 and DCOUNT=16 on a 4-cluster and
a 2-cluster configurations, respectively.

Figure 2

cj
pe

g

dj
pe

g

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c gs

gs
m

de
c

gs
m

en
c

m
es

am
ip

m
ap

m
es

ao
sd

em
o

m
es

at
ex

ge
n

m
pe

g2
de

c

m
pe

g2
en

c

pg
pd

ec

pg
pe

nc

ra
st

a

ra
w

ca
ud

io

ra
w

da
ud

io

H
M

E
A

N

0

2

4

6

8

IP
C

1 cluster - no predict
1 cluster - predict

2 cluster - no predict
2 cluster - predict

4 cluster - no predict
4 cluster - predict

Figure 2. IPC of a 1, 2 and 4-cluster configurations (baseline steering), with value prediction, and without it

shows the IPC obtained with the baseline
steering algorithm for 1, 2 and 4 clusters, with value predic-
tion and without it. The IPCs are higher when value predic-
tion is implemented, although the improvement is rather
low for the centralized configuration (2% on average, and
negative for several benchmarks). The benefits are higher
for the clustered organization (5% and 16% for the 2 and 4-
cluster configurations respectively).

The two leftmost bars in each group in Figure 3 depict
other interesting figures from the same previous experi-
ments. Graph c shows the IPCR ratio increase provided by
value prediction, which is a performance improvement spe-

cific to each clustered architecture, as discussed in Section
2.4. This graph shows a notable increase of the IPCR ratios
when value prediction is implemented (in spite of a slight
increase in the average workload imbalance, see graph a)
which is due to a drastic communication reduction (graph
b), especially for the 4-cluster configuration, where com-
munications are also higher: IPCR4 increases by 14%, from
0.65 to 0.74, and the communications rate is reduced by
44%, from 0.22 to 0.12.

3.2. Enhancing the partitioning scheme through
value prediction

In this paper we focus on how value prediction may
improve the performance of the steering logic in a clustered
processor. We propose some modifications of the Baseline
steering heuristic, based on the assumption that the predict-
ed source operands will never cause communications or de-
lays, and thus the steering may concentrate on improving
the workload balance. The assumption is true if the predic-
tion does not fail, but it may not hold otherwise. However,
as far as the misprediction rate is kept low, these modifica-
tions may improve significantly the workload balance. The
first two modifications to the steering strategy are de-
scribed below, in more detail:

First, when the source operand of an instruction is pre-
dicted and it is not yet available, the steering algorithm con-
siders it as available. By doing so, the algorithm does not
force to steer the instruction to the cluster where the oper-
and is going to be produced (if it is the only operand, rule
2.1 is not applied).

The second modification consists on considering any
predicted source operand to be mapped in all clusters be-
cause, regardless of the cluster it is sent to, it will not cause
any additional inter-cluster communication (unless the pre-
diction fails and the operand is remote). In consequence,
communication issues do not impose any restriction on the

choice of clusters (i.e. this operand does not constrain the
set of candidate clusters, if rule 2.2 is applied).

In summary, these two modifications to the baseline
steering algorithm eliminate in some cases the constraints
imposed by communications/delays issues (in rule 2), so
that the algorithm has better opportunities for balancing the
workload (since rule 3 selects one cluster from a wider
choice of clusters).

We evaluated the impact of these two modifications on
a 4-cluster configuration, and found that they produce a
negligible average performance improvement over the
baseline scheme. The average workload balance is reduced
by 31% and, since imbalance correction actions (which ig-
nore communication issues) are less frequent, one would
expect also to have less communications. However, the
communications ratio (which mostly determines the IPC)
remains constant because there is also a communications
increase due to an indiscriminate use of the optimistic ini-
tial assumptions. More specifically, if an instruction that
uses a predicted source operand is sent to a cluster where it
is not mapped, and the prediction fails, then this instruction
will be re-issued non-speculatively, and a communication
will be required to read the correct operand from a remote
cluster.

3.3. The VPB steering scheme

In consequence, to minimize the above mentioned
communications increase, the second modification to the
Baseline steering scheme should only apply to those cases
in which there is a potential for improving the workload
balance. In particular, we propose that the steering logic
considers predicted source operands to be mapped in all
clusters only when the workload imbalance is higher than a
given threshold (that we set empirically to DCOUNT=16
and DCOUNT=8, for a 4-cluster and a 2-cluster configura-
tions, respectively). In other words, if the workload is very
well balanced, the steering does not rely on value predic-
tion to improve workload balance, since it may increase the

communication requirements. We refer to this technique as
the Value Prediction Based scheme (VPB).

Figure 3

2 4

Clusters

0.0

1.0

2.0

3.0

Im
ba

la
nc

e

(a)

Baseline - nopredict
Baseline - predict
VPB - predict
VPB - perfectpredict

2 4

Clusters

0.00

0.10

0.20

C
om

m
un

ic
at

io
ns

/
In

st
ru

ct
io

n

(b)

2 4

Clusters

0.0

0.2

0.4

0.6

0.8

1.0

IP
C

R

(c)

Figure 3. Comparison of 4 configurations: Baseline without and with prediction, VPB with prediction and
VPB with perfect prediction. (a) Workload Imbalance (b) Communications/Instruction (c) Normalized IPCR

 compares workload imbalance, communica-
tion rate and IPCR for 4 different configurations: the Base-
line without and with value prediction, the VPB scheme,
and VPB with perfect prediction. Comparing the results for
a 4-cluster configuration with value prediction, the VPB
scheme has 12% less communications than the Baseline
and a 10% lower workload imbalance, which results in a
significant performance improvement (IPCR4 increases
from 0.74 to 0.77).

The rightmost bar in each group in Figure 3 show an
upper bound for the VPB scheme, assuming a perfect pre-
dictor. Communications are not zero because of fp values,
that are not considered by our predictor. IPCR ratios are
0.90 and 0.96 for a 4- and a 2-cluster configurations respec-
tively, which suggests that the performance of the VPB
scheme may significantly be improved by a more effective
predictor.

So far, all the reported experiments assumed that the
rename/steering logic takes a single cycle. However, due to
the additional complexity introduced by the steering logic,
it might require 2 cycles, for some particular technology.
We simulated a 2-cycle rename/steer stage and obtained
that, for a 4-cluster configuration with VPB, the IPC is de-
graded by less than 2%.

In summary, we observe that value prediction produc-
es significant performance improvements for a cluster or-
ganization, which are higher than those observed for a cen-
tralized one, especially when adequate steering techniques
are implemented. In particular, we have found that for a 4-
cluster configuration the IPCR4 ratio increases on average
by 18%, from 0.65 to 0.77, and for a 2-cluster configuration
IPCR2 increases by 5%, from 0.85 to 0.89. This is due to
the drastic 50% reduction of the communication rate (from
0.22 to 0.11 for 4 clusters, and from 0.12 to 0.06 for 2 clus-
ters). We can thus conclude that value prediction is a very
effective technique to reduce the communication require-
ments of clustered processors.

The overall benefits of value prediction translate into
an increase in IPC of 21% on average (from 2.96 to 3.59)
for a 4-cluster architecture, and a smaller increase for a 2-
cluster configuration (8%, from 3.84 to 4.14), whereas for
a centralized processor the benefits are almost negligible
(2%, from 4.54 to 4.63). Note that we assumed a simple
value predictor and the results will likely be better with
more complex and effective predictors

4. Sensitivity analysis

1 2 4

Comm. Latency
(cycles)

0

1

2

3

4

5

IP
C

(a)

2 clusters - predict
2 clusters - no predict

4 clusters - predict
4 clusters - no predict

1 Unlimited

Comm. Bandwidth
(paths/cluster)

0

1

2

3

4

5

IP
C

(b)

Figure 4. Impact of (a) communication latency and
(b) communication bandwidth, on the IPC

In future technologies the widening gap between the
relative speeds of gates and wires will decrease dramatical-
ly the percentage of on-chip transistors that a signal can
travel in a single clock cycle [1]. Using high clock rates
will require not only to reduce the capacity of many com-
ponents like register files and issue windows, but also to
pipeline more deeply the access to other structures.

In this work we focus on the inter-cluster communica-
tion bypasses. In the previous sections we have assumed
that these communications take 1 cycle (there is a 1 cycle
“bubble” between the copy instruction and the dependent
instruction, in another cluster). In this section, we study the
sensitivity of clustered architectures to the communication
latency, measured by the IPC degradation caused by a com-
munication latency of 1, 2, and 4 cycles. In all cases we as-
sume that communications are fully pipelined, that is, for a
given bypass path, one communication may begin per cy-
cle regardless of its total latency. We also analyze the im-
pact of the communication bandwidth and value predictor
table size on the performance of the processor.

4.1. Communication latency

Figure 4(a) shows that there is a significant perfor-
mance degradation when the communication latency in-

creases from 1 to 4 cycles. For instance, on a 4-cluster con-
figuration, the IPC decreases by 17% (and by 20% without
prediction, because of its higher communication require-
ments). Similar trends are observed on a 2-cluster configu-
ration, although the performance degradation is slightly
smaller (16% with prediction and 17% without prediction).

4.2. Communication bandwidth

The inter-cluster communication bandwidth has a di-
rect impact on the complexity and delay of the register files
[7, 16] and the bypass network, since it determines the
number of register file write ports devoted to remote ac-
cesses, the number of bypass multiplexer’s inputs coming
from remote clusters, and the number of outputs from the
bypass network to the interconnection network. Further-
more, the inter-cluster communication bandwidth also de-
termines the number of tags that are broadcast to the in-
struction queues of remote clusters. Therefore, it has a di-
rect impact on the complexity and delay of the wake-up
logic, which depends quadratically on the total number of
tags crossing its CAM cells [15, 16].

So far, we have assumed an unbounded bandwidth for
the interconnection network to isolate our results from pos-
sible communication bandwidth bottlenecks. Here we
study the impact of having a limited bandwidth. For an N-
cluster configuration, we assume a simplified model with
NxB independent paths. Each path is implemented through
a pipelined bus where any cluster can send a value and each
bus is connected to the write port of a single cluster register
file. Therefore, we assume that each register file has B
write ports for inter-cluster communications. Any cluster
may allocate one of these paths to write a value to a remote
register file, and holds it during a single cycle, since the
communication is fully pipelined. Obviously, this model is
somewhat idealized, since it omits the complexities due to
the pipelining, arbitration, or variable latencies dependent
on the topology, but it may provide a first order approach
to evaluate the problem.

Figure 4 (b) shows that when the communication
bandwidth is limited to a single path per cluster there is
very little performance degradation compared to the un-
bounded model. For instance, on a 4-cluster configuration,
the IPC decreases only by 1% (1.4% without value predic-
tion), and a small IPC decrement is also observed for a 2-
cluster configuration (0.2% and 1.8% respectively). In con-
sequence, for inter-cluster communications in a cost-effec-
tive architecture, it may suffice just a single write port in
each register file, a single incoming tag per issue window,
and a single remote bypass attached to the input multiplex-
ers of the functional units.

4.3. Value predictor table size

The predictor table size determines the prediction ac-
curacy, which has a significant influence on the perfor-
mance. We have evaluated the impact of the predictor table
size on a clustered architecture. Figure 5(a)

1K 4K 16K 128K

V.P.Table Size
(entries)

0

1

2

3

4

5

IP
C

(a)

1K 4K 16K 128K

V.P.Table Size
(entries)

0

20

40

60

80

100

P
er

ce
nt

 o
f

A
ll

V
al

ue
s

(b)

confident preds.
correct preds.

Figure 5. Impact of value predictor table size for 4
clusters on (a) IPC (b) predictor accuracy.

 shows that on
average, for a 4-cluster configuration, there is less than
4.5% IPC degradation when the predictor table size is re-
duced from 128K to just 1K entries.

Figure 5(b) shows the predictor accuracy for the same
range of predictor sizes. We can observe that for 42% of the
values, the predicted value was not used because it was not
confident. The percentage of non-confident predictions is a
bit high because we chose a rather simple value predictor.
In addition, the hit ratio (correctly predicted values over
predicted values) decreases from 93.4% to 90.9% when the
predictor size is reduced from 128K to 1K.

5. Related work

The main contribution of this work is realizing that
value prediction can eliminate many of the long wire com-
munication penalties in the context of a clustered architec-
ture. We have also presented a new steering algorithm, the
VPB scheme, that takes advantage of value prediction to
further reduce inter-cluster communications. Moreover,
this paper extends the techniques used in previous works
[4, 5] (for register renaming, dynamic steering of instruc-
tions and forwarding values among different clusters) from
a configuration with 2 heterogeneous clusters to a more
general design with an arbitrary number of homogeneous
clusters.

Other relevant works on dynamically scheduled clus-
tered processors are the Dependence-based, the Multiclus-
ter and the Pews architectures. In the Dependence-based
paradigm [15, 16], instructions are steered to several FIFO
queues instead of a conventional issue window, according

to a heuristic that ensures that two dependent instructions
are only queued in the same FIFO if there is no other in-
struction in between. This heuristic lacks of any explicit
mechanism to balance the workload, which is instead ad-
justed implicitly by the allocation algorithm of new free
FIFO queues. This allocation algorithm generates many
communications when it assigns a FIFO to a non-ready in-
struction, since it does not consider in which cluster the op-
erands are to be produced [5].

The Multicluster architecture [6] also used run-time
generated copy instructions for inter-cluster communica-
tion. In that architecture the register name space is parti-
tioned into two subsets, and program partitioning is done at
compile time without any ISA modification, by the appro-
priate logical register assignment for the result of each in-
struction. Both the workload balance and inter-cluster com-
munication are estimated at compile time. The same au-
thors proposed a dynamic scheme [7] that adjusts run-time
excess workload by re-mapping logical registers. However,
they found most heuristics to be little effective since the re-
mapping introduces communication overheads that offset
almost any balance benefit.

Kemp and Franklin proposed the Pews clustered archi-
tecture [11] where instructions are assigned to clusters
based on register dependences. However, since they as-
sume a centralized register file, the steering scheme only
needs to group two dependent instructions in the same clus-
ter when the value from the producer is not still available at
the time the consumer is decoded. This simple scheme is
not suitable for our “distributed” register file, and in addi-
tion, it does not address the load balancing problem.

The Alpha 21264 [10] is also a 2-cluster organization
that duplicates the integer register file, one copy in each
cluster. The two register file copies are kept consistent by
writing any result in both clusters. Instructions are dynam-
ically steered at issue time by a central instruction queue,
that sends an instruction to the cluster where its operands
will be available earlier. This organization does not reduce
the number of register write ports nor the number of regis-
ters per cluster. Besides, it does not reduce the complexity
of the issue logic, although it requires a simpler partitioning
scheme.

The Trace Processors [17, 20] dynamically partition
the code sequence into chunks of consecutive instructions,
called traces. Instruction steering to clusters is then per-
formed at run-time in a per-trace basis. This partitioning
may result in an acceptable workload balance since traces
have similar sizes but it is likely to result in many inter-
cluster communications since they are not taken into ac-
count by the partitioning scheme.

Sastry, Palacharla and Smith proposed a static code
partitioning technique [18]. The partitioning scheme is
constrained to dispatching loads, stores and complex inte-

ger instructions to the same cluster. In addition, it requires
some extensions to the ISA in order to specify to the hard-
ware the target cluster of each instruction. Moreover, their
scheme is less flexible and less effective than a dynamic
approach as shown elsewhere [4], since all dynamic in-
stances of the same static instruction are executed in the
same cluster regardless of run-time conditions, such as the
workload balance, that are difficult to estimate at compile
time.

6. Conclusions

Future microprocessors are likely to be communica-
tion bound due to the increasing penalty of wire delays. In
this paper we show that value prediction can be an effective
instrument to improve communication locality. In particu-
lar, we have presented an approach to reduce inter-cluster
communication by means of a dynamic steering logic that
leverages value prediction. Values produced in a cluster
and consumed in another one may not require long wire de-
lays to propagate from the producer to the consumer if the
consumer can correctly predict the value. The validation
required by the prediction is locally performed in the pro-
ducer cluster.

We have shown that value prediction removes com-
munications even for previously proposed steering
schemes not specially designed to exploit value prediction.
However, performance is higher if the steering logic ex-
ploits the predictability of values. We have presented a
novel steering scheme (VPB), and we have shown that it
outperforms previous proposals. This benefit mainly
comes from a 50% reduction in the amount of communica-
tions. We observed that value prediction reduces the penal-
ties caused by inter-cluster communications by 18% on av-
erage. Moreover, whereas value prediction increases the
IPC of a centralized architecture by just 2%, the same pre-
dictor increases the performance of a 4-cluster microarchi-
tecture with VPB steering by 21%.

Acknowledgements

We thank the anonymous referees for their valuable
comments. This work was developed using the resources of
the CEPBA, and is supported by the Ministry of Education
of Spain under contract CYCIT TIC98-0511.

References

[1] V.Agarwal, M.S.Hrishikesh, S.W.Keckler and D.Burger.
“Clock Rate versus IPC: The End of the Road for Conven-
tional Microarchitectures”, in Proc. of the 27th Annual Int.
Symp on Comp. Architecture, June 2000.

[2] Bohr, Mark T. “Interconnect Scaling - The Real Limiter to
High Performance ULSI”. in Proc. of the 1995 IEEE Int.
Electron Devices Meeting, pp. 241-244, 1995.

[3] D. Burger, T.M. Austin, S. Bennett. “Evaluating Future
Microprocessors: The SimpleScalar Tool Set”, Tech.
Report CS-TR-96-1308, Univ.Wisconsin-Madison, 1996.

[4] R.Canal, J-M.Parcerisa, A. González. “A Cost-Effective
Clustered Architecture”. In Proc. of the Int. Conf. on Paral-
lel Architectures and Compilation Techniques (PACT 99),
Newport Beach, CA, pp. 160-168, Oct. 1999.

[5] R.Canal, J-M.Parcerisa, A. González. “Dynamic Cluster
Assignment Mechanisms”. In Proc. of the 6th. Int. Symp.
on High-Performance Computer Architecture, pp.132-142,
Jan. 2000.

[6] K.I.Farkas, P.Chow, N.P.Jouppi, Z.Vranesic. “The Multi-
cluster Architecture: Reducing Cycle Time Through Parti-
tioning”, in Proc of the 30th. Ann. Symp. on
Microarchitecture, pp. 149-159, December 1997.

[7] K.I.Farkas. “Memory-system Design Considerations for
Dynamically-scheduled Microprocessors”, Ph.D. thesis,
Department of Electrical and Computer Engineering, Univ.
of Toronto, Canada, January 1997.

[8] F.Gabbay and A.Mendelson. “Speculative Execution Based
on Value Prediction”, TR. #1080, Technion, 1996.

[9] J.González and A.González. “Memory Address Prediction
for Data Speculation”. Tech. Report UPC-DAC-1996-50,
Univ. Politècnica de Catalunya, Spain. 1996.

[10] L. Gwennap. “Digital 21264 Sets New Standard”, Micro-
processor Report, 10 (14), Oct. 1996.

[11] G.A.Kemp, M.Franklin, “PEWs: A Decentralized Dynamic
Scheduler for ILP Processing”, in Proc. of Int. Conf. on
Parallel Processing, pp. 239-246, August 1996.

[12] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Media-
bench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems”, Proc. of the Int. Symp. on
Microarchitecture (Micro 30), pp. 330-335, Dec. 1997.

[13] D.Matzke, “Will Physical Scalability Sabotage Perfor-
mance Gains”, IEEE Computer 30(9): 37-39, Sept. 1997.

[14] Mediabench Home Page. URL: http://www.cs.ucla.edu/
~leec/mediabench/

[15] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors” in Proc of the 24th. Int.
Symp. on Comp. Architecture, pp. 1-13, June 1997.

[16] S.Palacharla. “Complexity-Effective Superscalar Proces-
sors”. Ph.D. thesis, Univ. of Winsconsin-Madison, 1998.

[17] E.Rotenberg, Q.Jacobson, Y.Sazeides and J.E.Smith,
“Trace Processors”, in Proc of the 30th. Ann. Symp. on
Microarchitecture, pp. 138-148, December 1997.

[18] S.S.Sastry, S.Palacharla and J.E.Smith, “Exploiting Idle
Floating-Point Resources For Integer Execution”, in Proc.
of the Int. Conf. on Programming Lang. Design and Imple-
mentation, pp. 118-129, June 1998.

[19] Y.Sazeides, S.Vassiliadis, J.E.Smith.“The Performance
Potential of Data Dependence Speculation & Collapsing”,
Proc.of Int. Symp. on Microarchitecture, pp.238-247, 1996.

[20] S. Vajapeyam and T. Mitra, “Improving Superscalar
Instruction Dispatch and Issue by Exploiting Dynamic
Code Sequences”, in Proc.of the Int. Symp. on Computer
Architecture, pp. 1-12, June 1997.

	Reducing Wire Delay Penalty through Value Prediction
	Joan-Manuel Parcerisa and Antonio González
	Dept. d’Arquitectura de Computadors, Universitat Politècnica de Catalunya
	c/. Jordi Girona, 1-3 Mòdul C6
	08034 Barcelona, Spain
	{jmanel,antonio}@ac.upc.es

	Abstract
	1. Introduction
	2. Microarchitecture
	2.1. Handling register copies
	Figure 1. Example of renaming 3 instructions. I2 requires to copy Rx from cluster n to m

	2.2. Value prediction
	2.3. Steering logic
	2.3.1. Communication
	2.3.2. Workload balance

	2.4. Experimental framework
	Table 1. Main architecture parameters, for configurations with 1, 2 and 4 clusters
	Table 2. The Mediabench benchmark suite1

	3. A steering scheme for value prediction
	3.1. The baseline steering algorithm
	1. If the workload imbalance is higher than a given threshold, the current instruction is sent to the least loaded cluster.
	2. Else, the clusters that will cause minimum communication penalties are identified:
	2.1. If any source operand is not available at dispatch time, select the cluster(s) where the pending operand(s) are to be produced.
	2.2. If all source operands are available, select the clusters that have the greatest number of operands currently mapped.
	2.3. If it has no source operands, select all clusters.

	3. Finally, choose the least loaded cluster among those selected in step 2.
	Figure 2. IPC of a 1, 2 and 4-cluster configurations (baseline steering), with value prediction, and without it

	3.2. Enhancing the partitioning scheme through value prediction
	3.3. The VPB steering scheme
	Figure 3. Comparison of 4 configurations: Baseline without and with prediction, VPB with prediction and VPB with perfect prediction. (a) Workload Imbalance (b) Communications/Instruction (c) Normalized IPCR

	4. Sensitivity analysis
	Figure 4. Impact of (a) communication latency and (b) communication bandwidth, on the IPC
	4.1. Communication latency
	4.2. Communication bandwidth
	4.3. Value predictor table size
	Figure 5. Impact of value predictor table size for 4 clusters on (a) IPC (b) predictor accuracy.

	5. Related work
	6. Conclusions
	Acknowledgements
	References
	[1] V.Agarwal, M.S.Hrishikesh, S.W.Keckler and D.Burger. “Clock Rate versus IPC: The End of the Road for Conventional Microarchitectures”, in Proc. of the 27th Annual Int. Symp on Comp. Architecture, June 2000.
	[2] Bohr, Mark T. “Interconnect Scaling - The Real Limiter to High Performance ULSI”. in Proc. of the 1995 IEEE Int. Electron Devices Meeting, pp. 241-244, 1995.
	[3] D. Burger, T.M. Austin, S. Bennett. “Evaluating Future Microprocessors: The SimpleScalar Tool Set”, Tech. Report CS-TR-96-1308, Univ.Wisconsin-Madison, 1996.
	[4] R.Canal, J-M.Parcerisa, A. González. “A Cost-Effective Clustered Architecture”. In Proc. of the Int. Conf. on Parallel Architectures and Compilation Techniques (PACT 99), Newport Beach, CA, pp. 160-168, Oct. 1999.
	[5] R.Canal, J-M.Parcerisa, A. González. “Dynamic Cluster Assignment Mechanisms”. In Proc. of the 6th. Int. Symp. on High-Performance Computer Architecture, pp.132-142, Jan. 2000.
	[6] K.I.Farkas, P.Chow, N.P.Jouppi, Z.Vranesic. “The Multicluster Architecture: Reducing Cycle Time Through Partitioning”, in Proc of the 30th. Ann. Symp. on Microarchitecture, pp. 149-159, December 1997.
	[7] K.I.Farkas. “Memory-system Design Considerations for Dynamically-scheduled Microprocessors”, Ph.D. thesis, Department of Electrical and Computer Engineering, Univ. of Toronto, Canada, January 1997.
	[8] F.Gabbay and A.Mendelson. “Speculative Execution Based on Value Prediction”, TR. #1080, Technion, 1996.
	[9] J.González and A.González. “Memory Address Prediction for Data Speculation”. Tech. Report UPC-DAC-1996-50, Univ. Politècnica de Catalunya, Spain. 1996.
	[10] L. Gwennap. “Digital 21264 Sets New Standard”, Microprocessor Report, 10 (14), Oct. 1996.
	[11] G.A.Kemp, M.Franklin, “PEWs: A Decentralized Dynamic Scheduler for ILP Processing”, in Proc. of Int. Conf. on Parallel Processing, pp. 239-246, August 1996.
	[12] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Mediabench: A Tool for Evaluating and Synthesizing Multimedia and Communications Systems”, Proc. of the Int. Symp. on Microarchitecture (Micro 30), pp. 330-335, Dec. 1997.
	[13] D.Matzke, “Will Physical Scalability Sabotage Performance Gains”, IEEE Computer 30(9): 37-39, Sept. 1997.
	[14] Mediabench Home Page. URL: http://www.cs.ucla.edu/ ~leec/mediabench/
	[15] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity- Effective Superscalar Processors” in Proc of the 24th. Int. Symp. on Comp. Architecture, pp. 1-13, June 1997.
	[16] S.Palacharla. “Complexity-Effective Superscalar Processors”. Ph.D. thesis, Univ. of Winsconsin-Madison, 1998.
	[17] E.Rotenberg, Q.Jacobson, Y.Sazeides and J.E.Smith, “Trace Processors”, in Proc of the 30th. Ann. Symp. on Microarchitecture, pp. 138-148, December 1997.
	[18] S.S.Sastry, S.Palacharla and J.E.Smith, “Exploiting Idle Floating-Point Resources For Integer Execution”, in Proc. of the Int. Conf. on Programming Lang. Design and Implementation, pp. 118-129, June 1998.
	[19] Y.Sazeides, S.Vassiliadis, J.E.Smith.“The Performance Potential of Data Dependence Speculation & Collapsing”, Proc.of Int. Symp. on Microarchitecture, pp.238-247, 1996.
	[20] S. Vajapeyam and T. Mitra, “Improving Superscalar Instruction Dispatch and Issue by Exploiting Dynamic Code Sequences”, in Proc.of the Int. Symp. on Computer Architecture, pp. 1-12, June 1997.

