
 1

Memory Bank Predictors

Stefan Bieschewski1, Joan-Manuel Parcerisa1, and Antonio González1,2

1Departament d’Arquitectura de Computadors 2Intel Barcelona Research Center
Universitat Politècnica de Catalunya Intel Labs, Universitat Politècnica de Catalunya
Barcelona, Spain Barcelona, Spain

{sbiesche,jmanel,antonio}@ac.upc.es

Abstract
Cache memories are commonly implemented through
multiple memory banks to improve bandwidth and latency.
The early knowledge of the data cache bank that an
instruction will access can help to improve the performance
in several ways. One scenario that is likely to become
increasingly important is clustered microprocessors with a
distributed cache. This work presents a study of different
cache bank predictors. We show that effective bank
predictors can be implemented with relatively low cost. For
instance, a predictor of approximately 4 Kbytes is shown to
achieve an average hit rate of 78% for SPECint2000 when
used to predict accesses to an 8-bank cache memory in a
contemporary superscalar processor. We also show how a
predictor can be used to reduce the communication latency
caused by memory accesses in a clustered
microarchitecture with a distributed cache design.

Keywords: Memory bank prediction, clustered
microarchitectures.

1. Introduction
The quest for higher levels of parallelism in processor
architecture has brought in the past decade growing levels
of complexity - and longer access times - to many processor
components. Moreover, with current trends towards deeper
pipelines and faster clock speeds, the time in clock cycles to
access on-chip memory structures is quickly increasing. At
the same time, as process technologies continue to shrink,
wire delays become dominant, compared to gate delays,
which makes access latencies grow even faster [1].

One way to cope with these challenges is to partition
data path components. Partitioning is the basis of clustered
microarchitectures. By partitioning subsystems and placing
them in clusters, their complexity, and therefore their
latency, and power requirements decrease and are more
easily managed.

Many recent clustered microarchitecture proposals
assume a centralized L1 data cache and disambiguation
hardware. Since the cache cannot be close to all clusters,

the cache access latencies experienced by distant clusters
may be very high due to wire delays. In addition, the
disambiguation hardware may be complex due to its
associative nature and its size. By partitioning the L1 data
cache into disjoint banks and placing one bank close to
each cluster, access latency can be greatly reduced.

To minimize communication latency, the cluster
assignment of a memory instruction (which occurs early in
the pipeline), needs to know the bank it will access, but the
address is not resolved until late in the pipeline. Hence,
most clustered architectures with a distributed L1 data
cache include a bank (or address) predictor, in order to
guide the steering decisions for memory instructions
[2][8][11]. Of course, cache access latency—hence
performance—depends on the accuracy of the bank
predictor.

We find that some of the proposed predictors achieve
better accuracies than those reported so far in the literature
[2][10][11]. Although not evaluated, results are expected to
be even better for FP programs due to their more regular
memory access patterns.

2. Bank Predictors
Many of the techniques used for branch and value
prediction can also be applied to bank prediction. There are
however some differences, like the range of the values
being predicted.

Below, we propose a number of bank predictors that are
inspired by schemes previously proposed for branches and
values.

The last bank predictor has a single lookup table that is
indexed by the least-significant bits of the program counter
and contains the identifiers of the last bank accessed. This
lookup table is referred as pattern history table or PHT for
short.

Global history predictors keep the identifiers of the
most recently accessed banks in a shift register. When a
new identifier is shifted in, the oldest one is discarded. The
contents of this shift register will be referred to as global
history because it may stem from different static
instructions. The global history is used as the index into the
PHT and the contents of the corresponding PHT entry are
used to produce the prediction.

 2

The Global predictor uses just the contents of the global
history register to index the PHT. Thus, the length of the
global history register depends on how many bits are
needed to index all entries in the PHT.

Gshare performs a bitwise XOR between the global
history register and the least-significant bits of the program
counter to obtain the index into the PHT. The optimal
history size for Gshare depends on the size of the PHT. We
use the history size that gives the best overall result for each
PHT size.
Local history predictors use a second table to store local
histories. This table is indexed by the least-significant bits
of the program counter. The value obtained in this way is
used to index the PHT. Because bank identifiers consist of
only a few bits, hashing the local history [9] does not
improve the accuracy of local bank predictors, as we have
experimentally confirmed. There are several possibilities to
split the available transistor budget between the two
predictor tables. We have found that this division has little
effect on prediction accuracy.

 Instead of predicting banks directly, stride predictors
predict strides. The final prediction is obtained by adding
the predicted stride to the last bank accessed. The first
stride predictor we examine is based on the last bank
predictor. To make the algorithm more robust against
occasional mispredictions we use the two-delta method: a
stride must occur at least twice in a row before it is used in
future predictions. The second alternative for a stride
predictor that we consider consists in predicting strides with
a local predictor. [6]

Tournament predictors contain two predictors that are
used in the conventional way to predict values and a third
meta predictor that chooses the final result from the two
other predictors. Each entry of the meta predictor contains a
saturating counter that is updated if only one predictor
predicts correctly. In this paper we examine a combination
of a Local and a Gshare predictor.

Voting is another way to combine predictors. The most
popular prediction is chosen. However, when predicting
banks tie can occur. We solve this problem by giving fixed
priorities to the predictors.

In this paper Gskew represents the family of voting
predictors.

3. Evaluation
In this section we evaluate several bank predictors. We
evaluate each of the above described predictors using a
simplified model. In this model we ignore the delays of a
realistic pipeline and assume that once a prediction is made,
the correct prediction is immediately known and the
predictor updated.

We assume a first level data cache divided into eight
quadword-interleaved banks. The bank number is
determined by the bits 3:5 of the data address. The
SPECint2000 benchmarks are used to evaluate the bank
predictors. The benchmarks are compiled with Compaq’s C

Compiler with maximum optimization level for the Alpha
21264. The programs are simulated with the functional
simulator of the SimpleScalar 3.0 toolset [4]. We skip the
initialization phase of the benchmarks and record the first
100 million of memory references.

Figure 1 shows the prediction accuracy of the different
predictors as a function of the predictor size. For predictor
sizes below 2 Kbytes, Gshare achieves the best results.
Above 2 Kbytes the tournament predictor obtains the
highest accuracy. A tournament predictor of a reasonable
size of 4 Kbytes can achieve 78% accuracy.

4. Case Study: Distributed Cache in a
Clustered Microarchitecture

To demonstrate one potential use of the predictors
described above, in this section we show how a bank
predictor can be used to improve performance in a clustered
microarchitecture with a distributed cache (see Figure 2).

For the following experiments we assumed a clustered
microarchitecture with distributed register file, based on the
one described by Parcerisa [7]. This architecture consists of
a conventional front-end and a clustered back-end, each
cluster containing its own issue queue and a set of
functional units and physical registers. After renaming,
each instruction is steered to the cluster where it will be
executed, following a dependence based scheme.

We also distribute the first level data cache and the load
store queues. Since L1 data is address-interleaved the target
bank of a load is not known until late in the pipeline. A
bank predictor is employed to steer load instructions to
clusters. A failed prediction incurs an additional delay for
obtaining the data from another cluster. Thus, a good bank
predictor helps to reduce inter-cluster communication and
load latency. A more detailed description of this
architecture can be found in [3].

We choose the most promising bank predictor from the
previous section. This predictor is a tournament predictor
consisting of a Gshare with a history of one access and a

Figure 1: SPECint2000 with ideal

 40%

 50%

 60%

 70%

 80%

 90%

100%

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512K 1M

C
ac

he
 B

an
k

P
re

di
ct

io
n

A
cc

ur
ac

y
[P

er
ce

nt
]

Predictor Size [bytes]

SPEC CINT2000 Average

Legend
global

last-bank
gshare-best

local
tour:gshare+local

gskew
stride

local-stride

 3

PHT with 2048 entries and a Local-Stride predictor with a
history table of 2048 entries and a PHT with 256 entries.
The total memory of the predictor amounts to 4 Kbytes.

In the following experiments we compare our
architecture to the baseline (which has no bank predictor)
and also include results for a perfect predictor to show the
potential of bank prediction.

The simulations have been carried out on a modified
version of sim-outorder [4] simulating 100 million
instructions from each SPECint2000 benchmark, after
skipping the initialization phase. The benchmarks are the
same as in the previous section. A summary of the main
architectural parameters of our clustered architecture is
given in table 1.

As shown in Figure 3, the proposed bank predictor
consistently improves performance for all the studied
benchmarks, with an average 6% speedup. Mcf shows
negligible improvements due to the high number of L2
cache misses. On the other hand, perlbmk experiences an
impressive 18% speedup. On average, the inter-cluster
communication latency of load data is reduced by 70%.

5. Conclusions
We have presented and discussed an ample number of bank
predictor techniques inspired on existing branch and value
predictors. They have been evaluated over a wide range of
sizes, and they are compared on the basis of equal
capacities. Our results have identified an effective 4Kbytes
sized predictor that achieves 78% accuracy for the
SPECint2000 when used to predict the accesses to an 8-
bank cache in a contemporary superscalar processor. This
predictor significantly outperforms previously reported
bank predictors. [2][10][11]

We have also presented a case study to demonstrate the
utility of bank predictors on clustered microarchitectures
with a distributed L1 data cache and disambiguation
hardware. We have shown that with an accurate bank
predictor the access latency of loads is greatly reduced, and
performance is significantly improved.

Acknowledgements
This work is supported by the Spanish Ministry of Science
and Technology and FEDER funds of the EU under
contracts TIN 2004-03072, and TIN 2004-07739-C02-01,
and Intel Corporation.

References
[1] V. Agarwal, et. al. “Clock Rate versus IPC: The End of

the Road for Conventional Microarchitectures.” ISCA-
27, 2000.

[2] R. Balasubramonian, et. al. “Microarchitectural Trade-
offs in the Design of a Scalable Clustered
Microprocessor,” Technical Report, University of
Rochester, 2003.

[3] St. Bieschewski, el. al. “Memory Bank Predictors,”
Technical Report, Universitat Politècnica de Catalunya,
2005.

[4] D. Burger, et. al. “Evaluating Future Microprocessors:
The SimpleScalar Tool Set,” Tech. Report CS-TR-96-
1308, University of Wisconsin-Madison, 1996.

[5] B. Goeman, et. al. “Differential FCM: Increasing Value
Prediction Accuracy by Improving Table Usage
Efficiency,” HPCA-01, 2001.

[6] H. Neefs, et. al. “A Technique for High Bandwidth and
Deterministic Low Latency Load/Store Access to
Multiple Cache Banks,” HPCA-00, 2000.

[7] J. M. Parcerisa, “Design of Clustered Superscalar
Microarchitectures”, Ph.D. Thesis, Universitat
Politècnica de Catalunya, 2004.

[8] P. Racunas and Y. N. Patt, “Partitioned first-level cache
design for clustered microarchitectures,” ICS-03, 2003.

[9] Y. Sazeides, and J. E. Smith, “Implementations of
Context Based Value Predictors,” Technical Report,
ECE-97-8, University of Wisconsin-Madison, 1997.

[10] A. Yoaz, et. al. “Speculation Techniques for Improving
Load Related Instruction Scheduling,” ISCA-26, 1999.

[11] V. V. Zyuban, P. M. Kogge, “Inherently Lower-Power
High-Performance Superscalar Architectures”, IEEE
Transactions on Computers, March, 2001, Vol. 50, No. 3.

Figure 3: IPC relative to baseline

0,9

0,95

1

1,05

1,1

1,15

1,2

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

hm
ea

n

Sp
ee

du
p

(IP
C

)

real

perfect

PE PE PE

Centralized Front End

LSQ +
L1 D$

Memory-Address-Communication

Memory-Data-Communication

LSQ +
L1 D$

LSQ +
L1 D$

Commit

Fetch/Decode Width 16
ROB Size 256
Number of PE 8
Integer Issue Queue Size 16 per PE
Floating Point Issue Queue Size 16 per PE
Issue Width Integer 2 per PE
Issue Width Floating Point 1 per PE
Physical Registers 56 per PE
Level 1 Data Cache Size 64 Kbytes
Level 1 Data Cache Latency 3 Cycles
Intercluster Network Topology Asynchronous

Ring
Intercluster Network Latency 1 Cycle per hop

Table 1: Main architectural
parameters

Figure 2: Pipeline for Memory
Instructions

