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Abstract 
Cache memories are commonly implemented through 
multiple memory banks to improve bandwidth and latency. 
The early knowledge of the data cache bank that an 
instruction will access can help to improve the performance 
in several ways. One scenario that is likely to become 
increasingly important is clustered microprocessors with a 
distributed cache. This work presents a study of different 
cache bank predictors. We show that effective bank 
predictors can be implemented with relatively low cost. For 
instance, a predictor of approximately 4 Kbytes is shown to 
achieve an average hit rate of 78% for SPECint2000 when 
used to predict accesses to an 8-bank cache memory in a 
contemporary superscalar processor. We also show how a 
predictor can be used to reduce the communication latency 
caused by memory accesses in a clustered 
microarchitecture with a distributed cache design. 

 

Keywords: Memory bank prediction, clustered 
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1. Introduction 
The quest for higher levels of parallelism in processor 
architecture has brought in the past decade growing levels 
of complexity - and longer access times - to many processor 
components. Moreover, with current trends towards deeper 
pipelines and faster clock speeds, the time in clock cycles to 
access on-chip memory structures is quickly increasing. At 
the same time, as process technologies continue to shrink, 
wire delays become dominant, compared to gate delays, 
which makes access latencies grow even faster [1].  

One way to cope with these challenges is to partition 
data path components. Partitioning is the basis of clustered 
microarchitectures. By partitioning subsystems and placing 
them in clusters, their complexity, and therefore their 
latency, and power requirements decrease and are more 
easily managed. 

Many recent clustered microarchitecture proposals 
assume a centralized L1 data cache and disambiguation 
hardware. Since the cache cannot be close to all clusters, 

the cache access latencies experienced by distant clusters 
may be very high due to wire delays. In addition, the 
disambiguation hardware may be complex due to its 
associative nature and its size. By partitioning the L1 data 
cache into disjoint banks and placing one bank close to 
each cluster, access latency can be greatly reduced. 

To minimize communication latency, the cluster 
assignment of a memory instruction (which occurs early in 
the pipeline), needs to know the bank it will access, but the 
address is not resolved until late in the pipeline. Hence, 
most clustered architectures with a distributed L1 data 
cache include a bank (or address) predictor, in order to 
guide the steering decisions for memory instructions 
[2][8][11]. Of course, cache access latency—hence 
performance—depends on the accuracy of the bank 
predictor. 

We find that some of the proposed predictors achieve 
better accuracies than those reported so far in the literature 
[2][10][11]. Although not evaluated, results are expected to 
be even better for FP programs due to their more regular 
memory access patterns.   

2. Bank Predictors 
Many of the techniques used for branch and value 
prediction can also be applied to bank prediction. There are 
however some differences, like the range of the values 
being predicted. 

Below, we propose a number of bank predictors that are 
inspired by schemes previously proposed for branches and 
values.  

The last bank predictor has a single lookup table that is 
indexed by the least-significant bits of the program counter 
and contains the identifiers of the last bank accessed. This 
lookup table is referred as pattern history table or PHT for 
short. 

Global history predictors keep the identifiers of the 
most recently accessed banks in a shift register. When a 
new identifier is shifted in, the oldest one is discarded. The 
contents of this shift register will be referred to as global 
history because it may stem from different static 
instructions. The global history is used as the index into the 
PHT and the contents of the corresponding PHT entry are 
used to produce the prediction.  
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The Global predictor uses just the contents of the global 
history register to index the PHT. Thus, the length of the 
global history register depends on how many bits are 
needed to index all entries in the PHT.  

Gshare performs a bitwise XOR between the global 
history register and the least-significant bits of the program 
counter to obtain the index into the PHT. The optimal 
history size for Gshare depends on the size of the PHT. We 
use the history size that gives the best overall result for each 
PHT size.  
Local history predictors use a second table to store local 
histories. This table is indexed by the least-significant bits 
of the program counter. The value obtained in this way is 
used to index the PHT. Because bank identifiers consist of 
only a few bits, hashing the local history [9] does not 
improve the accuracy of local bank predictors, as we have 
experimentally confirmed. There are several possibilities to 
split the available transistor budget between the two 
predictor tables. We have found that this division has little 
effect on prediction accuracy. 

 Instead of predicting banks directly, stride predictors 
predict strides. The final prediction is obtained by adding 
the predicted stride to the last bank accessed. The first 
stride predictor we examine is based on the last bank 
predictor. To make the algorithm more robust against 
occasional mispredictions we use the two-delta method: a 
stride must occur at least twice in a row before it is used in 
future predictions. The second alternative for a stride 
predictor that we consider consists in predicting strides with 
a local predictor. [6] 

Tournament predictors contain two predictors that are 
used in the conventional way to predict values and a third 
meta predictor that chooses the final result from the two 
other predictors. Each entry of the meta predictor contains a 
saturating counter that is updated if only one predictor 
predicts correctly. In this paper we examine a combination 
of a Local and a Gshare predictor. 

Voting is another way to combine predictors. The most 
popular prediction is chosen. However, when predicting 
banks tie can occur. We solve this problem by giving fixed 
priorities to the predictors. 

In this paper Gskew represents the family of voting 
predictors.  

3. Evaluation 
In this section we evaluate several bank predictors.  We 
evaluate each of the above described predictors using a 
simplified model.  In this model we ignore the delays of a 
realistic pipeline and assume that once a prediction is made, 
the correct prediction is immediately known and the 
predictor updated.  

We assume a first level data cache divided into eight 
quadword-interleaved banks. The bank number is 
determined by the bits 3:5 of the data address. The 
SPECint2000 benchmarks are used to evaluate the bank 
predictors. The benchmarks are compiled with Compaq’s C 

Compiler with maximum optimization level for the Alpha 
21264. The programs are simulated with the functional 
simulator of the SimpleScalar 3.0 toolset [4]. We skip the 
initialization phase of the benchmarks and record the first 
100 million of memory references. 

Figure 1 shows the prediction accuracy of the different 
predictors as a function of the predictor size. For predictor 
sizes below 2 Kbytes, Gshare achieves the best results. 
Above 2 Kbytes the tournament predictor obtains the 
highest accuracy. A tournament predictor of a reasonable 
size of 4 Kbytes can achieve 78% accuracy. 

4. Case Study: Distributed Cache in a 
Clustered Microarchitecture 

To demonstrate one potential use of the predictors 
described above, in this section we show how a bank 
predictor can be used to improve performance in a clustered 
microarchitecture with a distributed cache (see Figure 2).  

For the following experiments we assumed a clustered 
microarchitecture with distributed register file, based on the 
one described by Parcerisa [7]. This architecture consists of 
a conventional front-end and a clustered back-end, each 
cluster containing its own issue queue and a set of 
functional units and physical registers. After renaming, 
each instruction is steered to the cluster where it will be 
executed, following a dependence based scheme. 

We also distribute the first level data cache and the load 
store queues. Since L1 data is address-interleaved the target 
bank of a load is not known until late in the pipeline. A 
bank predictor is employed to steer load instructions to 
clusters. A failed prediction incurs an additional delay for 
obtaining the data from another cluster. Thus, a good bank 
predictor helps to reduce inter-cluster communication and 
load latency. A more detailed description of this 
architecture can be found in [3]. 

We choose the most promising bank predictor from the 
previous section. This predictor is a tournament predictor 
consisting of a Gshare with a history of one access and a 

Figure 1: SPECint2000 with ideal 
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PHT with 2048 entries and a Local-Stride predictor with a 
history table of 2048 entries and a PHT with 256 entries. 
The total memory of the predictor amounts to 4 Kbytes. 

In the following experiments we compare our 
architecture to the baseline (which has no bank predictor) 
and also include results for a perfect predictor to show the 
potential of bank prediction. 

The simulations have been carried out on a modified 
version of sim-outorder [4] simulating 100 million 
instructions from each SPECint2000 benchmark, after 
skipping the initialization phase. The benchmarks are the 
same as in the previous section. A summary of the main 
architectural parameters of our clustered architecture is 
given in table 1. 

As shown in Figure 3, the proposed bank predictor 
consistently improves performance for all the studied 
benchmarks, with an average 6% speedup. Mcf shows 
negligible improvements due to the high number of L2 
cache misses. On the other hand, perlbmk experiences an 
impressive 18% speedup. On average, the inter-cluster 
communication latency of load data is reduced by 70%. 

5. Conclusions 
We have presented and discussed an ample number of bank 
predictor techniques inspired on existing branch and value 
predictors. They have been evaluated over a wide range of 
sizes, and they are compared on the basis of equal 
capacities. Our results have identified an effective 4Kbytes 
sized predictor that achieves 78% accuracy for the 
SPECint2000 when used to predict the accesses to an 8-
bank cache in a contemporary superscalar processor. This 
predictor significantly outperforms previously reported 
bank predictors. [2][10][11]                 

We have also presented a case study to demonstrate the 
utility of bank predictors on clustered microarchitectures 
with a distributed L1 data cache and disambiguation 
hardware. We have shown that with an accurate bank 
predictor the access latency of loads is greatly reduced, and 
performance is significantly improved. 
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Figure 3: IPC relative to baseline
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Fetch/Decode Width 16 
ROB Size 256 
Number of PE 8 
Integer Issue Queue Size 16 per PE  
Floating Point Issue Queue Size 16 per PE  
Issue Width Integer 2 per PE 
Issue Width Floating Point 1 per PE 
Physical Registers 56 per PE 
Level 1 Data Cache Size 64 Kbytes 
Level 1 Data Cache Latency 3 Cycles 
Intercluster Network Topology Asynchronous 

Ring 
Intercluster Network Latency 1 Cycle per hop 

Table 1: Main architectural 
parameters 

Figure 2: Pipeline for Memory 
Instructions 


