
A Trace-Scaling Agent for Parallel Application Tracing
1

Felix Freitag, Jordi Caubet, Jesus Labarta

Computer Architecture Department (DAC)

European Center for Parallelism of Barcelona (CEPBA)

Universitat Politècnica de Catalunya (UPC)

{felix,jordics,jesus}@ac.upc.es

1
 This work has been supported by the Spanish Ministry of Science and Technology under TIC2001-0995-C02-01 and by the European Union

(FEDER).

Abstract

Tracing and performance analysis tools are an

important component in the development of high

performance applications. Tracing parallel programs

with current tracing tools, however, easily leads to large

trace files with hundreds of Megabytes. The storage,

visualization, and analysis of such trace files is often

difficult.

We propose a trace-scaling agent for tracing parallel

applications, which learns the application behavior in

runtime and achieves a small, easy to handle trace. The

agent dynamically identifies the amount of information

needed to capture the application behavior. This

knowledge acquired at runtime allows recording only the

non-iterative trace information, which drastically reduces

the size of the trace file.

1. Introduction

Performance analysis tools are an important component

of the parallel program development and tuning cycle. To

obtain the raw performance data of an application, an

instrumented version of the application is run with probes

that take measures of specific events or performance

indicators (i.e. hardware counters, subroutines, parallel

loops).

The obtained trace data can be summarized on-line by

the tracing tool. More often, however, it is stored in trace

files for off-line analysis. We focus our interest in tracing

packages for parallel programs, where all the acquired

data is stored in trace files for a detailed analysis at a later

time. Tracing parallel programs with such tracing tools

easily leads to huge trace files with hundreds of

Megabytes, which has several problems concerning

storage, visualization and analysis of such traces.

We propose a trace-scaling agent for tracing tools of

parallel applications. In runtime the agent learns the

periodic structure in the application behavior exhibited by

many scientific programs. The caption of the application

behavior allows storing only the non-iterative trace

information, which drastically reduces the storage

requirement for trace files. We show that the agent can

obtain such an understanding automatically at runtime

without programmer intervention or support.

The remainder of the paper is structured as follows: In

section 2 we describe scalability problems of tracing

mechanisms. Section 3 shows the implementation of the

trace-scaling agent. Section 4 describes some applications

and results of scaled tracing. Section 5 contains further

disussion of our approach. In section 6 we conclude the

paper.

2. Scalability of tracing mechanisms

2.1. Problems associated to large traces

The performance analysis of parallel programs easily

leads to a large number of trace files, since often several

executions of the instrumented application are carried out

in order to observe the application behavior under slightly

changed conditions. Another reason why several traces are

needed is to study how the application scales. All these

traces for the different configurations of the application

and the environment (number of processors, algorithmic

changes, hardware counters, …) require storage space.

Visualization packages have difficulties in showing

such large traces effectively. Large traces make the

navigation (zooming, forward/backward animation)

through them very slow and require the machine where the

visualization package is run to have a large physical

memory. Otherwise, the response time of the tool

increases significantly, strongly affecting the motivation

of the programmer to carry out the performance analysis.

The high amount of redundant trace information in

large trace files hides the relevant details of the

application behavior. When visualizing such large traces,

zooming down to identify the application structure

becomes an inefficient task for the program analyst. Often,

the analyst needs to have a certain understanding of the

application in order to carry out an efficient performance

analysis.

2.2. Related work

The most frequent approach to restrict the size of the

trace in current practice is to insert calls into the source

code of the application to start and stop the tracing.

Systems such as VampirTrace [6], VGV [4], and

OMPItrace [1] provide this mechanism. This approach

requires the modification of the source code, which may

not always be available to the performance analyst. Even

if the source code is available, it is necessary to have a

certain understanding of it before being able to properly

insert the tracing control calls.

The Paradyn project [5] developed an instrumentation

technology (Dyninst) through which it is possible to

dynamically insert and take out probes in a running

program. Although no effort is made to automatically

detect periods, the methodology behind this approach also

relies on the iterative behavior of applications. The

automatic periodicity detection idea we present in this

paper could be useful inside such a dynamic analysis tool

to present to the user the actual structure of the

application.

In IBM UTE [7], an intermediate approach is followed

to partially tackle the problem, which large traces pose to

the analysis tool. The tracing facility can generate huge

traces of events, containing information with a lot of detail

down to the level of context switches and global system

activities. Then, filters are used to extract a trace that

focuses on a specific application, summarizing

information in record formats more amenable to

visualization and better describing the application

behavior. To properly handle the fast access to specific

regions of a large trace file the SLOG format (scalable

logfile format) has been adopted. Using a frame index the

Jumpshot visualization tool [8] improves the access time

to trace data.

2.3 Our approach

Our approach to the scalability problem of tracing is to

adapt dynamically the traced time. We propose a trace-

scaling agent, which learns in runtime the structure of the

application. It automatically determines the relevant

tracing intervals, which are sufficient to capture the

application behavior. With the trace-scaling agent it is

possible to trace only one or several iterations of the

dynamically detected repetitive pattern in the application

behavior. Our approach does not require limiting the

granularity of tracing, nor the number of parameters read

at every tracing point, nor the problem size. Due to the

dynamic interception of the calls to runtime libraries in the

tracing tool, our implementation does not require the

source code of the application to achieve the scaled trace.

In runtime the redundant trace information is identified

and only the non-iterative application behavior is stored in

the trace file. The analysis of such a reduced trace allows

tuning the main iterative body of the application.

3. Trace-scaling agent

3.1 Recognition of iterative patterns

The trace of the application is a data stream containing

the values of several parameters. If the application

contains loops, then it has segments with periodic

patterns. We apply a periodicity detection algorithm to the

data stream in order to segment the data stream into

periodic patterns. The used algorithm is frame based and

requires a finite length of past data values to compute the

periodicity.

We implement the periodicity detector from [3] in the

trace-scaling agent in order to perform the automatic

detection of iterative structures in the trace. The stream of

parallel function identifiers from the trace is the input. The

output of the agent is the indication whether periodicity

exists in the data stream and its period length.

The algorithm used by the periodicity detector is based

on the distance metric given by the equation

() () () ||
1

0

∑
−

=

−−=
N

i

mixixsignmd

(1).

In equation (1) N is the size of the data window, m is

the delay (0<m<M), M<=N, x[i] is the current value of the

data stream, and d(m) is the value computed to detect the

periodicity. It can be seen that equation (1) compares the

data sequence with the data sequence shifted m samples.

Equation (1) computes the distance between two vectors

of size N by summing the magnitudes of the L1-metric

distance of N vector elements. The sign function is used to

set the values d(m) to 1 if the distance is not zero. The

value d(m) becomes zero if the data window contains an

identical periodic pattern with periodicity m.

If the periodicity m in the data stream is several

magnitudes less than the size N of the data window, then

the value d(m) may become zero for multiples of m. On

the other hand if the periodicity m in the data stream is

larger than the data window size N, then the detector

cannot capture the periodicity. The periodicity length we

found in the used applications was usually small (between

5 –20) and less than 300. For an unknown data stream, the

window size N of the periodicity detector can be set

initially to a large value, in order to be able to capture

potentially large periodicities. Once a satisfying

periodicity is detected, the window size can be reduced

dynamically.

3.2. Implementation

In our implementation of equation (1), we store a finite

number of previous data values of the data stream

including the most recent value in a data vector. On this

data vector the algorithm performs periodicity detection.

This data vector can be implemented as a FIFO buffer of

length M+N. This type of implementation uses the least

amount of memory, but requires a higher number of

operations at every instant i than other implementations.

Applying equation (1) on the data vector requires M x

N operations to compute the values of d(m) at the instant i

of the data stream. It can be observed, however, that some

operations are done with the same data values several

times at different instants i. The previously computed

distances between vector elements could be stored to

reduce the number of computations made by the algorithm

at instant i. There is a trade-off between the number of

computations made at instant i, and the amount of memory

needed by the algorithm. In order to reduce the amount of

computation we implement a FIFO organized matrix of

size MxN where previously computed distances are

stored. Using this distance matrix we compute at each

instant i the value of di(m) for all values of m, where x(i)

is the value of the data value at the current sample i, and

x(i-m) is the data value obtained m samples before. The

computed values of di(m) are written in the column

corresponding to the instant i in the matrix.

In case of using the distance matrix to store previously

computed distances, then only M instead of M x N

operations need to be made at instant i to obtain the new

distances di(m). The value of d(m) for all values m is

obtained by summing the elements of each raw of the

distance matrix, i.e. the previously computed distances

and each most recent distance di(m). This means that at

every instant i new values are written in a column of the

distance matrix, and d(m) is computed as the sum of the

values in each raw using the previously computed values

of the other columns. Using the distance matrix the size of

the data vector can be reduced to M, since at instant i only

the distances between the new data value and the M-1 past

data values need to be computed. It can be seen in

equation (1) that if the data window size N and the delay

M is increased, larger iterative structures can be detected.

Then, the number of computations to obtain d(m) also

increases. However, when increasing N and M and the

previously computed distances are re-used, then the

increase of operations is only linear.

In order to reduce the number of shifts of the FIFO

operations, the data structures of the periodicity detector

conceptually working as FIFO organized matrix and FIFO

organized data vector are programmed as circular lists. At

each instant i the pointer to the current list element shifts

by one such that it points to the oldest values in the list.

The new sample overwrites the column containing the

oldest values with the new distance. The implementation

with circular lists avoids moving the data values. The

number of operations at instant i are reduced, which leads

to a small overhead of this implementation.

3.3. OpenMP and tracing tool integration

The structure of OpenMP based parallel applications

usually iterates over several parallel regions. For each

parallel directive the master thread invokes a runtime

library passing as argument the address of the outlined

routine. The tracing mechanism intercepts the call and

obtains a stream of parallel function identifiers. This

stream contains all executed parallel functions of the

application, both in periodic and non-periodic parallel

regions.

We have implemented the trace-scaling agent in the

OMPItrace tracing tool [1]. The tracing tool generates

trace files, which consist of events (hardware counter

values, parallel regions entry/exit, user functions

entry/exit) and thread states (computing, idle, fork/join).

Instrumented

application

execution

Tracing

tool
Agent

data stream

iterative patterns

scaled trace

full trace

parameter

filter

configuration

t

iterative behavior: no trace is written

t

Figure 1. Interaction of the agent in the tracing

tool.

In Figure 1 the interaction between the instrumented

application, the tracing tool, and the agent is illustrated. It

can be seen that the agent receives a data stream from the

tracing tool. The data stream contains the values of a

traced parameter such as the identifiers of the executed

functions in parallel regions. The agent learns the

application behavior. Having this indication the tracing

tool knows, which is the non-iterative information to write

to the trace file.

4. Applications of scaled tracing

4.1. Experimental setup

We trace the applications given in Table 1: Four

applications from the NAS benchmark suite: Bt (class A),

Lu (class A), Cg (class A) and Sp (class A); and five

applications of the SPEC95 suite: Swim, Hydro2d, Apsi,

Tomcatv, and Turb3d, all with ref data set.

All experiments are carried out on a Silicon Graphics

Origin 2000. The OpenMP applications are executed in a

dedicated environment with 8 CPUs. We configure the

trace-scaling agent such that after having detected 10

iterative parallel regions it stops writing trace data to the

file until it observes a new program behavior. The

parameters contained in the trace file are the thread states

and OpenMP events, which include two hardware

counters.

Table 1. Evaluated benchmarks.

Benchmarks Application

NAS Bt

NAS Cg

NAS Lu

NAS

benchmarks

NAS Sp

Apsi

Hydro2D

Swim

Tomcatv

SPEC95fp

benchmarks

Turb3d

4.2. Application structure identification

The trace-scaling agent allows inserting information

about the detected application structure in the trace

records, which indicates the start/end of an iterative

pattern. This information is highly useful for the analyst

because one of the first activities when facing a large trace

is to zoom down, trying to identify an area of a few

periods that can be taken as reference for looking at

details. The tracing tool writes these events indicating

periodic patterns to the trace even if the writing of all

other trace information is suspended.

In Figure 3 (see final page) two iterative regions of the

NAS Bt benchmark with their thread states are shown.

The boundaries of the iterative regions are represented as

flags, which reveal the application structure. The number

of periodic patterns and their duration can easily be

computed from the periodicity event in the trace file.

4.3. Improvement of the ease of visualization

Considering the full trace in Figure 4 (see final page) a

first visual perception of the program behavior can be

quite misleading. For example, it seems that there is a lot

of fork/join activity in the first thread (white color) while

this is only an effect of the display precision. The reason

is that at the scale that had to be used to display the whole

trace, each pixel represents a large time interval (152 ms)

within which one thread can perform many changes of

activity.

In Figure 5 (see final page) we can easily identify that

there is a periodic pattern (period boundaries tagged with

flags). It can be observed that after a certain number of

repetitions this pattern changes and that a new periodic

pattern is then repeated. The direct look at the full trace of

Figure 4 hardly reveals that there is a special behavior in

the middle part. The flags in Figure 5 identify the period.

With the scaled trace it is immediate to zoom to an

adequate level to see the actual pattern of behavior. In the

visualization of the scaled trace, the iterative trace

information is not shown (Figure 5 black area), since the

tracing mechanism did not write it to the trace file.

4.4. Reduction of the trace file size

We examine how much the trace file size reduces when

using the trace-scaling agent. Figure 2 shows the size of

the trace files for the NAS and SPEC95 benchmarks

obtained with and without using the agent. It can be seen

that with scalable tracing the trace files are reduced

significantly. The NAS Lu trace file, for instance, reduces

from 173 Mb to 8 Mb, which is a reduction of 95%. Had

we traced less than 10 iterations, the trace size would

reduce more.

0

5

10

15

20

25

NAS b
t

NAS sp

NAS cg
Swim

Tur
b3

D

Tom
ca

tv
Aps

i

T
ra

ce
 le

n
g

th
 (

M
b

)

Full trace

10 iterations

1

1 0

1 0 0

1 0 0 0

NA S lu Hy dro2D

T
ra

ce
 le

n
g

th
 (

M
b

)

F ull t rac e

10 iterations

Figure 2. Comparison of the trace file size with full

and scalable tracing.

5. Discussion

The overhead of an implementation is an important

performance factor of real-time tools. In [2] we have

evaluated the overhead produced by the trace-scaling

agent. It was observed that the overhead introduced by

tracing is small in terms of the execution time. The

original tracing tool adds 1% - 3% to the execution time.

With the trace-scaling agent, the overhead is 3% - 6%.

In applications with a periodic pattern we expect to

reach the same concluysions on performance when

analysing a subset of the iterations, i.e. the scaled trace. In

[2] we have compared the performance indices computed

from the scaled and full traces. Our results show that the

same performance conclusions can be obtained when

analysing the scaled trace of the applications.

The agent learns the application behavior from the

stream of function identifiers. It could be possible that the

agent detects iterative behavior in the executed functions,

but at the same time the performance of the other indices

(cache misses, TLB misses, …) could differ significantly

from one iteration to another. If such a case occurs in an

isolated parallel region, the agent would not detect this

situation.

Our tool relies on the iterative behavior of applications,

where loops are executed many times. Many scientific

applications have such a structure. The studied NAS and

SPEC95 benchmarks, which mostly perform numeric

computations, exhibit iterative application behavior. In

case of having the trace-scaling agent activated with

another class of applications, which are non-iterative,

simply no periodic behavior would be detected and the

whole trace would be written to the file.

6. Conclusions

We have described the some scalability problems of

tracing in current performance analysis tools and why

these are a problem for storage, visualization, and

efficient analysis. We have proposed a trace-scaling agent,

which allows storing data for a complete analysis while

achieving a small trace file. We have implemented the

agent, which learns the application behavior in runtime

and allows storing only the non-iterative trace data. We

have shown that the size of such a scaled trace file

becomes significantly reduced, while in the traced interval

the relevant application behavior is captured. We

observed that the scaled traces are easy to handle by

visualization tools and the scaled trace lets the analyst

faster observe relevant application behavior such as the

application structure. Our implementation of the trace-

scaling agent has a small overhead and it is used in

runtime. The scaled trace can substitute the full trace in

several performance analysis tasks, since it allows the

performance analyst to reach the same conclusions on the

application performance as when using the full trace.

7. References

[1] J. Caubet, J. Gimenez, J. Labarta, L. DeRose, J.

Vetter. “A Dynamic Tracing Mechanism for Performance

Analysis of OpenMP Applications.” In International

Workshop on OpenMP Applications and Tools

(WOMPAT 2001), July 2001, pp. 53-67.

[2] J. Caubet, F. Freitag, J. Labarta. “Comparison of

scaled and full traces of OpenMP applications.“ Tech.

Report UPC-DAC-2001-31.

[3] F. Freitag, J. Corbalan, J. Labarta. “A dynamic

periodicity detector: Application to speedup

computation.” In Intermational Parallel and Distributed

Processing Symposium (IPDPS 2001), April 2001.

[4] J. Hoeflinger, B. Kuhn, W. Nagel, P. Petersen, H.

Rajic, S. Shah, J. Vetter, M. Voss, and R. Woo. An

Integrated Performance Visualizer for MPI/OpenMP

Programs. In International Workshop on OpenMP

Applications and Tools (WOMPAT 2001), July 2001, pp.

40-52.

[5] B. P. Miller, M. D. Callaghan. The Paradyn Parallel

Performance Measurement Tools. IEEE Computer

28(11): 37-46, November 1995.

[6] Pallas: Vampirtrace. Installation and User’s Guide.

http://www.pallas.de

[7] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F.

Parpia, A. Chen, E. Lusk and W. Gropp. From Trace

Generation to Visualization: A Performance Framework

for Distributed Parallel Systems. In Proceedings of

SuperComputing (SC 2000), November 2000.

[8] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward

scalable performance visualization with Jumpshot. In

International Journal of High Performance Computing

Applications, 13(2): pages 277-288, 1999.

Figure 3. Visualization of the thread states in the NAS Bt application

in 2 iterative parallel regions. Light color=idle, dark color=computing.

Figure 4. Visualization of the whole Hydro2D execution trace (full trace).

Figure 5. Visualization of the Hydro2D execution with scaled tracing (scaled trace).

Tracing disabled,
Iterative application
behavior

Tracing disabled,
Iterative application
behavior

Tracing restarted,
program behavior
has changed

Tracing restarted,
program behavior
has changed

Start of iterative parallel region

