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Abstract 
 

Tracing and performance analysis tools are an 

important component in the development of high 

performance applications. Tracing parallel programs 

with current tracing tools, however, easily leads to large 

trace files with hundreds of Megabytes. The storage, 

visualization, and analysis of such trace files is often 

difficult.  

We propose a trace-scaling agent for tracing parallel 

applications, which learns the application behavior in 

runtime and achieves a small, easy to handle trace. The 

agent dynamically identifies the amount of information 

needed to capture the application behavior. This 

knowledge acquired at runtime allows recording only the 

non-iterative trace information, which drastically reduces 

the size of the trace file.  

 

1. Introduction 
 

Performance analysis tools are an important component 

of the parallel program development and tuning cycle. To 

obtain the raw performance data of an application, an 

instrumented version of the application is run with probes 

that take measures of specific events or performance 

indicators (i.e. hardware counters, subroutines, parallel 

loops).  

The obtained trace data can be summarized on-line by 

the tracing tool. More often, however, it is stored in trace 

files for off-line analysis. We focus our interest in tracing 

packages for parallel programs, where all the acquired 

data is stored in trace files for a detailed analysis at a later 

time. Tracing parallel programs with such tracing tools 

easily leads to huge trace files with hundreds of 

Megabytes, which has several problems concerning 

storage, visualization and analysis of such traces. 

We propose a trace-scaling agent for tracing tools of 

parallel applications. In runtime the agent learns the 

periodic structure in the application behavior exhibited by 

many scientific programs. The caption of the application 

behavior allows storing only the non-iterative trace 

information, which drastically reduces the storage 

requirement for trace files. We show that the agent can 

obtain such an understanding automatically at runtime 

without programmer intervention or support. 

The remainder of the paper is structured as follows: In 

section 2 we describe scalability problems of tracing 

mechanisms. Section 3 shows the implementation of the 

trace-scaling agent. Section 4 describes some applications 

and results of scaled tracing. Section 5 contains further 

disussion of our approach. In section 6 we conclude the 

paper. 

 

2. Scalability of tracing mechanisms 

 
2.1. Problems associated to large traces 
 

The performance analysis of parallel programs easily 

leads to a large number of trace files, since often several 

executions of the instrumented application are carried out 

in order to observe the application behavior under slightly 

changed conditions. Another reason why several traces are 

needed is to study how the application scales. All these 

traces for the different configurations of the application 

and the environment (number of processors, algorithmic 

changes, hardware counters, …) require storage space. 

Visualization packages have difficulties in showing 

such large traces effectively. Large traces make the 

navigation (zooming, forward/backward animation) 

through them very slow and require the machine where the 

visualization package is run to have a large physical 

memory. Otherwise, the response time of the tool 

increases significantly, strongly affecting the motivation 

of the programmer to carry out the performance analysis. 

The high amount of redundant trace information in 

large trace files hides the relevant details of the 

application behavior. When visualizing such large traces, 

zooming down to identify the application structure 

becomes an inefficient task for the program analyst. Often, 

the analyst needs to have a certain understanding of the 

application in order to carry out an efficient performance 

analysis. 

 



2.2. Related work 
 

The most frequent approach to restrict the size of the 

trace in current practice is to insert calls into the source 

code of the application to start and stop the tracing. 

Systems such as VampirTrace [6], VGV [4], and 

OMPItrace [1] provide this mechanism. This approach 

requires the modification of the source code, which may 

not always be available to the performance analyst. Even 

if the source code is available, it is necessary to have a 

certain understanding of it before being able to properly 

insert the tracing control calls.  

The Paradyn project [5] developed an instrumentation 

technology (Dyninst) through which it is possible to 

dynamically insert and take out probes in a running 

program. Although no effort is made to automatically 

detect periods, the methodology behind this approach also 

relies on the iterative behavior of applications.  The 

automatic periodicity detection idea we present in this 

paper could be useful inside such a dynamic analysis tool 

to present to the user the actual structure of the 

application.  

In IBM UTE [7], an intermediate approach is followed 

to partially tackle the problem, which large traces pose to 

the analysis tool. The tracing facility can generate huge 

traces of events, containing information with a lot of detail 

down to the level of context switches and global system 

activities. Then, filters are used to extract a trace that 

focuses on a specific application, summarizing 

information in record formats more amenable to 

visualization and better describing the application 

behavior. To properly handle the fast access to specific 

regions of a large trace file the SLOG format (scalable 

logfile format) has been adopted. Using a frame index the 

Jumpshot visualization tool [8] improves the access time 

to trace data. 

 

2.3 Our approach  

Our approach to the scalability problem of tracing is to 

adapt dynamically the traced time. We propose a trace-

scaling agent, which learns in runtime the structure of the 

application. It automatically determines the relevant 

tracing intervals, which are sufficient to capture the 

application behavior. With the trace-scaling agent it is 

possible to trace only one or several iterations of the 

dynamically detected repetitive pattern in the application 

behavior. Our approach does not require limiting the 

granularity of tracing, nor the number of parameters read 

at every tracing point, nor the problem size. Due to the 

dynamic interception of the calls to runtime libraries in the 

tracing tool, our implementation does not require the 

source code of the application to achieve the scaled trace. 

In runtime the redundant trace information is identified 

and only the non-iterative application behavior is stored in 

the trace file. The analysis of such a reduced trace allows 

tuning the main iterative body of the application. 

 

3. Trace-scaling agent 
 

3.1 Recognition of iterative patterns 

 

The trace of the application is a data stream containing 

the values of several parameters. If the application 

contains loops, then it has segments with periodic 

patterns. We apply a periodicity detection algorithm to the 

data stream in order to segment the data stream into 

periodic patterns. The used algorithm is frame based and 

requires a finite length of past data values to compute the 

periodicity.  

We implement the periodicity detector from [3] in the 

trace-scaling agent in order to perform the automatic 

detection of iterative structures in the trace. The stream of 

parallel function identifiers from the trace is the input. The 

output of the agent is the indication whether periodicity 

exists in the data stream and its period length. 

The algorithm used by the periodicity detector is based 

on the distance metric given by the equation 
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In equation (1) N is the size of the data window, m is 

the delay (0<m<M), M<=N, x[i] is the current value of the 

data stream, and d(m) is the value computed to detect the 

periodicity. It can be seen that equation (1) compares the 

data sequence with the data sequence shifted m samples. 

Equation (1) computes the distance between two vectors 

of size N by summing the magnitudes of the L1-metric 

distance of N vector elements. The sign function is used to 

set the values d(m) to 1 if the distance is not zero. The 

value d(m) becomes zero if the data window contains an 

identical periodic pattern with periodicity m.   

If the periodicity m in the data stream is several 

magnitudes less than the size N of the data window, then 

the value d(m) may become zero for multiples of m. On 

the other hand if the periodicity m in the data stream is 

larger than the data window size N, then the detector 

cannot capture the periodicity. The periodicity length we 

found in the used applications was usually small (between 

5 –20) and less than 300. For an unknown data stream, the 

window size N of the periodicity detector can be set 

initially to a large value, in order to be able to capture 

potentially large periodicities. Once a satisfying 

periodicity is detected, the window size can be reduced 

dynamically. 

 

 

 

 



3.2. Implementation 

 
In our implementation of equation (1), we store a finite 

number of previous data values of the data stream 

including the most recent value in a data vector. On this 

data vector the algorithm performs periodicity detection. 

This data vector can be implemented as a FIFO buffer of 

length M+N. This type of implementation uses the least 

amount of memory, but requires a higher number of 

operations at every instant i than other implementations. 

Applying equation (1) on the data vector requires M x 

N operations to compute the values of d(m) at the instant i 

of the data stream. It can be observed, however, that some 

operations are done with the same data values several 

times at different instants i. The previously computed 

distances between vector elements could be stored to 

reduce the number of computations made by the algorithm 

at instant i. There is a trade-off between the number of 

computations made at instant i, and the amount of memory 

needed by the algorithm. In order to reduce the amount of 

computation we implement a FIFO organized matrix of 

size MxN where previously computed distances are 

stored. Using this distance matrix we compute at each 

instant i the value of di(m) for all values of m, where x(i) 

is the value of the data value at the current sample i, and 

x(i-m) is the data value obtained m samples before. The 

computed values of di(m) are written in the column 

corresponding to the instant i in the matrix. 

In case of using the distance matrix to store previously 

computed distances, then only M instead of M x N 

operations need to be made at instant i to obtain the new 

distances di(m). The value of d(m) for all values m is 

obtained by summing the elements of each raw of the 

distance matrix, i.e. the previously computed distances 

and each most recent distance di(m). This means that at 

every instant i new values are written in a column of the 

distance matrix, and d(m) is computed as the sum of the 

values in each raw using the previously computed values 

of the other columns. Using the distance matrix the size of 

the data vector can be reduced to M, since at instant i only 

the distances between the new data value and the M-1 past 

data values need to be computed. It can be seen in 

equation (1) that if the data window size N and the delay 

M is increased, larger iterative structures can be detected. 

Then, the number of computations to obtain d(m) also 

increases. However, when increasing N and M and the 

previously computed distances are re-used, then the 

increase of operations is only linear.  

In order to reduce the number of shifts of the FIFO 

operations, the data structures of the periodicity detector 

conceptually working as FIFO organized matrix and FIFO 

organized data vector are programmed as circular lists. At 

each instant i the pointer to the current list element shifts 

by one such that it points to the oldest values in the list. 

The new sample overwrites the column containing the 

oldest values with the new distance. The implementation 

with circular lists avoids moving the data values. The 

number of operations at instant i are reduced, which leads 

to a small overhead of this implementation. 

 

3.3. OpenMP and tracing tool integration 
 

The structure of OpenMP based parallel applications 

usually iterates over several parallel regions. For each 

parallel directive the master thread invokes a runtime 

library passing as argument the address of the outlined 

routine. The tracing mechanism intercepts the call and 

obtains a stream of parallel function identifiers. This 

stream contains all executed parallel functions of the 

application, both in periodic and non-periodic parallel 

regions.  

We have implemented the trace-scaling agent in the 

OMPItrace tracing tool [1]. The tracing tool generates 

trace files, which consist of events (hardware counter 

values, parallel regions entry/exit, user functions 

entry/exit) and thread states (computing, idle, fork/join). 
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Figure 1. Interaction of the agent in the tracing 

tool. 

 

In Figure 1 the interaction between the instrumented 

application, the tracing tool, and the agent is illustrated. It 

can be seen that the agent receives a data stream from the 

tracing tool. The data stream contains the values of a 

traced parameter such as the identifiers of the executed 

functions in parallel regions. The agent learns the 

application behavior. Having this indication the tracing 

tool knows, which is the non-iterative information to write 

to the trace file.  

 

 

 

 

 



4. Applications of scaled tracing 
 

4.1. Experimental setup 
 

We trace the applications given in Table 1: Four 

applications from the NAS benchmark suite: Bt (class A), 

Lu (class A), Cg (class A) and Sp (class A); and five 

applications of the SPEC95 suite: Swim, Hydro2d, Apsi, 

Tomcatv, and Turb3d, all with ref data set.  

All experiments are carried out on a Silicon Graphics 

Origin 2000. The OpenMP applications are executed in a 

dedicated environment with 8 CPUs. We configure the 

trace-scaling agent such that after having detected 10 

iterative parallel regions it stops writing trace data to the 

file until it observes a new program behavior. The 

parameters contained in the trace file are the thread states 

and OpenMP events, which include two hardware 

counters.    

 

Table 1.  Evaluated benchmarks. 

Benchmarks Application 

NAS Bt 

NAS Cg 

NAS Lu 

NAS 

benchmarks 

NAS Sp 

Apsi 

Hydro2D 

Swim 

Tomcatv 

SPEC95fp 

benchmarks 

Turb3d 

 

4.2. Application structure identification  
 

The trace-scaling agent allows inserting information 

about the detected application structure in the trace 

records, which indicates the start/end of an iterative 

pattern. This information is highly useful for the analyst 

because one of the first activities when facing a large trace 

is to zoom down, trying to identify an area of a few 

periods that can be taken as reference for looking at 

details. The tracing tool writes these events indicating 

periodic patterns to the trace even if the writing of all 

other trace information is suspended.  

In Figure 3 (see final page) two iterative regions of the 

NAS Bt benchmark with their thread states are shown. 

The boundaries of the iterative regions are represented as 

flags, which reveal the application structure. The number 

of periodic patterns and their duration can easily be 

computed from the periodicity event in the trace file.  

 

 

 

 

4.3. Improvement of the ease of visualization 

 

Considering the full trace in Figure 4 (see final page) a 

first visual perception of the program behavior can be 

quite misleading. For example, it seems that there is a lot 

of fork/join activity in the first thread (white color) while 

this is only an effect of the display precision. The reason 

is that at the scale that had to be used to display the whole 

trace, each pixel represents a large time interval (152 ms) 

within which one thread can perform many changes of 

activity.  

In Figure 5 (see final page) we can easily identify that 

there is a periodic pattern (period boundaries tagged with 

flags). It can be observed that after a certain number of 

repetitions this pattern changes and that a new periodic 

pattern is then repeated. The direct look at the full trace of 

Figure 4 hardly reveals that there is a special behavior in 

the middle part. The flags in Figure 5 identify the period. 

With the scaled trace it is immediate to zoom to an 

adequate level to see the actual pattern of behavior. In the 

visualization of the scaled trace, the iterative trace 

information is not shown (Figure 5 black area), since the 

tracing mechanism did not write it to the trace file. 

 

4.4. Reduction of the trace file size 

 

We examine how much the trace file size reduces when 

using the trace-scaling agent. Figure 2 shows the size of 

the trace files for the NAS and SPEC95 benchmarks 

obtained with and without using the agent. It can be seen 

that with scalable tracing the trace files are reduced 

significantly. The NAS Lu trace file, for instance, reduces 

from 173 Mb to 8 Mb, which is a reduction of 95%. Had 

we traced less than 10 iterations, the trace size would 

reduce more.  
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Figure 2. Comparison of the trace file size with full 

and scalable tracing. 

 

5. Discussion 
 

The overhead of an implementation is an important 

performance factor of real-time tools. In [2] we have 

evaluated the overhead produced by the trace-scaling 

agent. It was observed that the overhead introduced by 

tracing is small in terms of the execution time. The 

original tracing tool adds 1% - 3% to the execution time. 

With the trace-scaling agent, the overhead is 3% - 6%.  

In applications with a periodic pattern we expect to 

reach the same concluysions on performance when 

analysing a subset of the iterations, i.e. the scaled trace. In 

[2] we have compared the performance indices computed 

from the scaled and full traces. Our results show that the 

same performance conclusions can be obtained when 

analysing the scaled trace of the applications.  

The agent learns the application behavior from the 

stream of function identifiers. It could be possible that the 

agent detects iterative behavior in the executed functions, 

but at the same time the performance of the other indices 

(cache misses, TLB misses, …) could differ significantly 

from one iteration to another. If such a case occurs in an 

isolated parallel region, the agent would not detect this 

situation.  

Our tool relies on the iterative behavior of applications, 

where loops are executed many times. Many scientific 

applications have such a structure. The studied NAS and 

SPEC95 benchmarks, which mostly perform numeric 

computations, exhibit iterative application behavior. In 

case of having the trace-scaling agent activated with 

another class of applications, which are non-iterative, 

simply no periodic behavior would be detected and the 

whole trace would be written to the file.  

 

6. Conclusions 
 

We have described the some scalability problems of 

tracing in current performance analysis tools and why 

these are a problem for storage, visualization, and 

efficient analysis. We have proposed a trace-scaling agent, 

which allows storing data for a complete analysis while 

achieving a small trace file. We have implemented the 

agent, which learns the application behavior in runtime 

and allows storing only the non-iterative trace data. We 

have shown that the size of such a scaled trace file 

becomes significantly reduced, while in the traced interval 

the relevant application behavior is captured. We 

observed that the scaled traces are easy to handle by 

visualization tools and the scaled trace lets the analyst 

faster observe relevant application behavior such as the 

application structure. Our implementation of the trace-

scaling agent has a small overhead and it is used in 

runtime. The scaled trace can substitute the full trace in 

several performance analysis tasks, since it allows the 

performance analyst to reach the same conclusions on the 

application performance as when using the full trace.  
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Figure 3. Visualization of the thread states in the NAS Bt application

in 2 iterative parallel regions. Light color=idle, dark color=computing. 

 
Figure 4. Visualization of the whole Hydro2D execution trace (full trace). 

 

Figure 5. Visualization of the Hydro2D execution with scaled tracing (scaled trace).
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