
34

Hardware Support for Accurate Per-Task Energy Metering
in Multicore Systems

QIXIAO LIU, Barcelona Supercomputing Center (BSC-CNS) and Universitat Politècnica
de Catalunya (UPC)
MIQUEL MORETO, UPC and BSC-CNS
VICTOR JIMENEZ and JAUME ABELLA, BSC-CNS
FRANCISCO J. CAZORLA, Spanish National Research Council (IIIA-CSIC) and BSC-CNS
MATEO VALERO, UPC and BSC-CNS

Accurately determining the energy consumed by each task in a system will become of prominent impor-
tance in future multicore-based systems because it offers several benefits, including (i) better application
energy/performance optimizations, (ii) improved energy-aware task scheduling, and (iii) energy-aware billing
in data centers. Unfortunately, existing methods for energy metering in multicores fail to provide accurate
energy estimates for each task when several tasks run simultaneously.
This article makes a case for accurate Per-Task Energy Metering (PTEM) based on tracking the resource
utilization and occupancy of each task. Different hardware implementations with different trade-offs between
energy prediction accuracy and hardware-implementation complexity are proposed. Our evaluation shows
that the energy consumed in a multicore by each task can be accurately measured. For a 32-core, 2-way,
simultaneous multithreaded core setup, PTEM reduces the average accuracy error from more than 12%
when our hardware support is not used to less than 4% when it is used. The maximum observed error for
any task in the workload we used reduces from 58% down to 9% when our hardware support is used.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors); C.4 [Performance of Systems]: Measurement Techniques

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Power modeling, per-task energy attribution, hardware counters, mod-
eling and estimation, chip multiprocessors, simultaneous multithreaded

ACM Reference Format:
Liu, Q., Moreto, M., Jimenez, V., Abella, J., Cazorla, F. J., and Valero M. 2013. Hardware support for
accurate per-task energy metering in multicore systems. ACM Trans. Architec. Code Optim. 10, 4, Article 34
(December 2013), 27 pages.
DOI: http://dx.doi.org/10.1145/2555289.2555291

New article, not an extension of a conference paper.
This work has been partially supported by the Spanish Ministry of Science and Innovation under grant
TIN2012-34557 and the HiPEAC Network of Excellence. Q. Liu has been funded by the Chinese Scholarship
Council under grant 2010608015.
Authors’ addresses: Q. Liu, M. Moreto, V. Jimenez, J. Abella, F. J. Cazorla, and M. Valero, Computer Science,
Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481 or permissions@acm.org.
c© 2013 ACM 1544-3566/2013/12-ART34 $15.00

DOI: http://dx.doi.org/10.1145/2555289.2555291

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:2 Q. Liu et al.

1. INTRODUCTION

Energy is one of the most—if not the most—expensive resources in a computingsys-
tem. For instance, the electricity demand in data centers, where many computers work
nonstop dissipating large amounts of power, shows the fastest growth among all sec-
tors. In fact, current facilities consume several megawatts, enough to power small
towns [Belady and Malone 2006]. Koomey [2011] estimates that worldwide energy con-
sumption attributable to servers and data centers was more than 200 billion kilowatt
hours (kWh) annually in 2010, and recent studies estimate the corresponding electrical
cost to be $30 billion [Raghavendra et al. 2008]. Energy already accounts for 20% of
the total cost of ownership in a large-scale computing facility [Hamilton 2009]. This
cost doubles if we add the cost for the cooling infrastructure, implying that the total
energy-related cost is already in the same order of magnitude as hardware-related
cost (servers). Additionally, although server cost has remained almost constant over
successive generations, energy cost is expected to rise [Barroso 2005].

Energy demand is also an issue for home computers. A typical desktop computer
may use in the order of 100 to 200 Watts (W; the particular figure depends on the
type of computer and peripherals), whereas laptops fit in a lower range (60–100W).
The energy cost of running a computer can be computed as Watts×Hours of Use

1,000 × Cost per
kilowatt hour. Assuming that a computer runs for 20,000 hours during its lifetime
(around 28 months nonstop) and a cost of 15 cents per kilowatt hour, the energy cost
of a 150W desktop is $450. This figure already represents a significant fraction of
the purchase cost of a computer. Moreover, as stated previously, energy cost will keep
growing in the future [Barroso 2005].

It is our position that accurately measuring the energy consumed by each task1 ina
computer, instead of considering only the whole energy consumed by the computer,
will have several applications. The benefits of such per-task energy metering are wide
across different computing domains:

(1) Selection of appropriate co-runners. Task interaction in hardware shared resources
may negatively affect tasks, hurting performance and increasing energy require-
ments. Per-task energy metering can help the OS scheduler or a runtime-based
scheduler to decide which tasks must be run and when, thus reducing the total
energy profile.

(2) Energy/Performance optimization. Although allocating more resources to a pro-
gram may make it finish sooner, it could also increase its energy consumption.
Thus, the net effect on total energy is not clear. Measuring the energy consumed
per task would allow finding the processor setup (e.g., number of cores) and software
setup (e.g., scheduling) that leads to the lowest system energy consumption.

(3) Billing in data centers. Data centers charge users for the use of their resources. The
fact that costs will be dominated by energy makes billing systems more and more
energy-centric; therefore, part of the bill directly depends on the energy consumed
by users’ running jobs. Measuring the energy that each task consumes, rather than
evenly dividing the cost of energy among running tasks, would allow charging each
user more fairly.

Unfortunately, current approaches to measure tasks’ energy consumption evenly
distribute computer system energy across all running tasks, as if all of them were using
resources similarly. However, different applications may easily incur vastly different

1Throughout this article, we consider single-threaded tasks. In Section 9, we summarize how our approach
also covers multithreaded tasks.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:3

Fig. 1. Power consumption of SPEC CPU2006 benchmarks on a PS701 board with an IBM POWER7
processor.

resource utilization across similarly allocated resources. Such heterogeneous resource
utilization translates into heterogeneous power dissipation per application; therefore,
simply dividing power across running tasks is neither fair nor accurate enough.

To elaborate on the need for accurate per-task energy metering, Figure 1 shows
the average power dissipation when executing all SPEC CPU2006 benchmarks on a
POWER7-based system [Kalla et al. 2010]. As shown, different tasks incur different av-
erage power dissipation, with the maximum variation being 16%, between 453.povray
and 410.bwaves. Hence, povray-like and bwaves-like workloads executing for the same
amount of time incur significantly different energy consumption; however, the same
amount of energy would be attributed to each program. Note that in this case workloads
are fairly homogeneous given that they correspond to a single benchmark suite. More
heterogeneous workloads including database processing, I/O-intensive applications,
and high-performance ones exhibit higher power variations.

In this article, we make a case for accurate per-task energy metering. In particular,
we propose an idealized reference approach to perform accurate PTEM based on the
resource utilization of each task. We also present a simple, yet accurate, implementa-
tion of such an approach. We focus on the main shared hardware resources in current
multicore processors: at chip level, we deal with the shared Last-Level Cache (LLC)
and the network on chip; at core level, we consider simultaneous multithreaded (SMT)
cores, which have a massive amount of shared hardware resources and represent the
worst scenario for achieving accurate energy predictions with PTEM.

The benefits of PTEM extend to different computing domains, such as data centers,
smartphones, or desktop systems. In this article, we take a cross-domain approach, in
which instead of focusing on a given target environment, we analyze how to perform
accurate per-task energy metering and what hardware/software support is required for
an efficient implementation.

Overall, the main contributions of this article are as follows:

—We propose an accurate (yet idealized) approach to perform per-task energy metering
based on per-task resource utilization. Our approach considers the utilization of

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:4 Q. Liu et al.

each hardware component in the chip (e.g., cores, caches) and its impact in dynamic,
static, and leakage energy. Both single-threaded and SMT cores are considered by
our approach. To the best of our knowledge, it is the first reference approach against
which per-task energy measuring mechanisms can be compared.

—We show how state-of-the-art approaches such as those based on evenly distributing
the energy consumed across running tasks fail to provide accurate enough per-task
energy measurements.

—We propose efficient designs of our approach to perform per-task energy metering
in multicore processors. We illustrate how our designs allow to accurately estimate
the amount of energy that each task consumes in the chip by means of lightweight
hardware mechanisms tracking activity and occupancy of the main resources in a
per-task basis. In particular, we show how different trade-offs provide increasing
accuracy at the expense of higher hardware and energy cost.

Our results over a variety of multicore processor setups and workloads, including
SPEC CPU2006 and traces from a real High-Performance Computing (HPC) applica-
tion called wrf , show that a low-cost implementation of our PTEM mechanism achieves
tight per-task energy estimates with respect to an ideal nonimplementable model. For
a 64-thread setup, 32 cores where each core is two-way SMT, PTEM reduces the av-
erage accuracy error from more than 12% when evenly splitting energy over running
tasks to less than 4% when our low-cost hardware support is used. The maximum
observed error for any task in the workload we used is reduced from 58% to 9% when
our hardware support is used.

The rest of this article is organized as follows. Section 2 provides background on
energy consumption and existing approaches for energy metering. Section 3 presents
our idealized approach to perform per-task energy metering. Its efficient hardware
implementation is described in Section 4. The experimental setup, intracluster results,
and full processor results are detailed in Sections 5, 6, and 7, respectively. Next, in a
case study in Section 8, we show the significant differences in energy and performance
variability. The case for parallel applications is presented in Section 9. Other issues
related to energy metering are discussed in Section 10. Section 11 draws the main
conclusions of this work.

2. BACKGROUND AND RELATED WORK

2.1. Previous Energy Metering Approaches

With the increasing number of computing cores in processor architectures, the number
and heterogeneity of the tasks that will coexist in a chip will increase. In this evolving
scenario, it is of prominent importance to perform accurate per-task energy metering
and accounting [Liu et al. 2013]. Given a workload composed by n tasks Ti, T2, . . . , Tn
running in a processor with n cores, per-task energy metering consists of tracking the
energy that a given task, Ti, consumes during a given period of time. Per-task energy
accounting consists of deriving for a given task Ti the energy that Ti would have
consumed if it had run in isolation with a fair share of the hardware resources. As
shown in Liu et al. [2013], energy accounting builds upon energy metering, so per-task
energy metering is the first challenge to address.

In recent years, there has been an increasing interest for energy metering in different
environments from data centers [Kansal et al. 2010; Bertran et al. 2012; Jimenez et al.
2011] to smartphones [Pathak et al. 2011; Carroll and Heiser 2010; Nokia 2012; Chung
et al. 2011]. In those proposals, however, the focus is on providing accurate energy me-
tering for single-core architectures, or multicore ones in which a single (multithreaded)
application is executed. Those scenarios are relatively easy to handle because when
an application is scheduled on the CPU, it is accounting all energy consumption of the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:5

system (using a simple meter, for instance). In the case of smartphones, the proposals do
not go beyond per-component energy measurement or energy estimation based on the
execution time of a given task. In this article, however, we propose much more accurate
techniques especially in the context of CMP and SMT processors, where applications
dynamically share resources in nonobvious ways.

Many proposals [Bellosa 2000; Bircher and John 2012; McCullough et al. 2011;
Howard et al. 2010] use Performance Monitoring Counters (PMCs) or system events
(e.g., OS system calls) to break down the system energy consumption across its com-
ponents (e.g., memory, processor). That is, authors develop power models that use a
set of PMCs and predefined weights derived through correlation. In many cases, the
results of the power model are compared against approaches utilizing circuit-based
mechanisms such as current sense resistors. Although previous approaches have been
shown to be very accurate in metering per-component and overall system energy con-
sumption, they do not provide accurate per-task energy measurements, which is the
focus of this article. It is our position that as processor design moves toward multi-
and many-core processors with SMT cores, in which an increasing number of different
applications simultaneously run on the same chip, providing accurate per-task energy
metering becomes of paramount importance. Thus, our idealized reference per-task
energy model and PTEM, its efficient implementation, cover this gap.

Recently, Shen et al. [2013] proposed a request-level OS mechanism to meter power
consumption to each server request based on PMCs [Bellosa 2000]. The authors con-
sider both active and maintenance power and attribute it to the responsible server
requests. However, per-task energy estimates obtained with this approach cannot be
obtained since, as stated by the authors, “Request executions in a concurrent, multi-
stage server contain fine-grained activities with frequent context switches, and direct
power measurements on such spatial and temporal granularities are not available in
today’s systems.” Moreover, to the best of our knowledge, no reference model has been
reported for per-task energy metering.

In this article, we make the first proposal of (i) an idealized reference per-task en-
ergy measuring model identifying those parameters that must be tracked (many of
them not tracked in existing processors) and (ii) hardware support to accurately mea-
sure per-task energy consumption in multicore processors with SMT cores narrowing
the amount of information needed to still obtain accuracy levels close to those of the
idealized reference model, but at an affordable hardware cost. Our approach is com-
plementary to the one by Shen et al. [2013], since PTEM provides the hardware layer
that delivers accurate per-task energy measurements (which Shen et al. lack), whereas
their approach covers software-related implications of using the information provided
by PTEM. Thus, this article presents the first reference per-task energy measuring
model in multicore SMT processors, as well as an efficient implementation, PTEM,
which is evaluated against the reference model.

2.2. Energy-Proportional Systems

In Figure 1, we showed an example of the energy variation across several workloads
even if they are allocated the same amount of resources. These variations are already
significant, and they will most probably increase in the future, as system manufactur-
ers pay increasing attention to energy efficiency and energy-proportional computing
[Barroso and Hölzle 2007].

A system is energy proportional if (i) it presents the maximum energy consumption
when achieving the maximum performance, (ii) the energy consumption is close to zero
when the system is idle, and (iii) the energy increases between these two extremes as
performance increases as well. Although current systems are not yet fully, the trend
is to move toward this kind of systems. In the presence of more energy-proportional

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:6 Q. Liu et al.

systems, static (and likely leakage) energy will decrease to some extent and dynamic
energy will be the dominant source of energy consumption. Under this situation, energy
consumption will depend more on the application activity and thus, considering per-
task energy consumption, will be even more necessary.

2.3. Breaking Down Energy Consumption

Previous studies [Bircher and John 2012] have shown that the energy consumption of
the processor can easily be around 50% to 60% of the total computing system energy
consumption. In this article, we focus on that component and leave per-task energy-
metering for the other resources as part of our future work. We break energy into its
main three components: dynamic, static, and leakage.

Dynamic energy corresponds to the energy spent to perform those useful activities
that circuits are intended to do, such as the energy spent in a register file to retrieve
the contents of a particular register.

Static energy corresponds to the energy consumed due to useless activity not triggered
by the program(s) being run. For instance, significant clocking power is consumed in
idle blocks. Similarly, many SRAM arrays, such as cache memories, precharge some
bitlines every cycle in order to speed up accesses. However, such activity is useless if
no access occurs [Brooks et al. 2000]. Note that the energy consumed due to an access
corresponding to a useless instruction (e.g., a misspeculated instruction) is considered
as dynamic energy despite such activity is useless because the action has been triggered
by the program(s) under execution. Breaking down dynamic and static energy is useful
in our context, because it avoids mixing the energy consumed due to the activity
triggered by the programs running and the energy that cannot be attributed to any
program in particular if several of them are running.

Leakage corresponds to the energy wasted due to imperfections of the technology
used to implement the circuit. Thus, leakage energy includes all energy wasted due to
undesired current leaks and short circuits from supply to ground when transitioning
gates from one state to another. Note that if circuits were implemented with perfect
technology, no leakage power would be dissipated. This energy is referred to as static
or leakage energy indistinctly in other works [Weste and Eshraghian 1988]. However,
for the sake of clarity, we only use the term leakage energy to refer to this particular
energy wasted due to imperfections of the technology.

3. IDEALIZED PER-TASK ENERGY METERING

This section presents an idealized utilization-based model for per-task energy metering.
The result of this model is later used as a reference point for our models to measure
per-task energy at an affordable hardware cost. For the sake of clarity, we assume a
single voltage level and that energy consumption does not change with temperature.
In Section 10, we show how to extend our models to consider the impact in energy
consumption of multiple voltage levels and temperature ranges.

We assume a clustered multicore architecture where each cluster consists of a set of
cores, each having core private data and instruction first-level caches, plus a shared
on-chip second-level cache accessed through a shared bus (see Figure 2). We refer to
such a cache as LLC. All clusters are connected to memory through a shared bus. We
focus on the shared L2 caches, the core slice,2 and the shared buses. The rest of the
on-chip resources (e.g., I/O interface) have low contribution to total energy consumption
[Nawathe et al. 2008], so we simply assume an even distribution of their energy con-
sumption over running tasks, which has negligible impact on our estimation. If other

2In this article, core slice refers to the core plus the private L1 data and instruction caches.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:7

Fig. 2. Example of clustered architecture used in this article.

components have significant contribution to the total energy of the chip, energy meter-
ing should be extended accordingly following the same principles as for the components
analyzed in this work.

3.1. Shared LLC

The dynamic energy consumption in the shared LLC for a given task i is proportional
to the number of accesses. It can be computed as follows:

ELLC
dyn,total(tki) =

K∑
k=1

#actionLLC
k (tki) × ELLC

actionLLC
k

, (1)

where ELLC
actionLLC

k
stands for the energy per LLC access of type k, which is assumed

to be available in this idealized model; and #actionLLC
k (tki) stands for the number of

LLC accesses of type k performed by the task i. Three main factors determine the
access types we consider: whether an access reads or writes, hits or misses in LLC,
and in the latter case whether it evicts a dirty line. The possible combinations are
read hit, write hit, read miss replacing a dirty line, read miss replacing a nondirty
line, write miss replacing a dirty line, and write miss replacing a nondirty line. Under
each combination of these factors, the energy consumption of an access can change.
Extending the model to consider other access types (e.g., invalidations) is trivial since
we only need to multiply the energy consumed by each access type by the number of
those accesses.

Static energy is consumed when resources are idle. We use cache occupancy as a proxy
to measure static energy: we assume that those cache regions (lines) not occupied by
a given task could be turned off so that they would not incur any energy consumption
[Abella et al. 2005]. The total static LLC energy consumption for a task is obtained as
follows:

ELLC
st, total(tki) = OccLLC(tki) × ELLC

st × IdleTime(LLC), (2)

where OccLLC(tki) stands for the average fraction of cache lines owned by task i, ELLC
st

corresponds to the static energy per cycle consumed by the LLC when no access is
performed, and IdleTime(LLC) stands for the number of idle cycles for the LLC (no
access to LLC). ELLC

st is assumed to be provided under the ideal model.
Leakage energy is proportional to the cache occupancy and can be easily computed

as follows:

ELLC
leak,total(tki) = OccLLC(tki) × ELLC

leak × ExecTime(tki), (3)

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:8 Q. Liu et al.

where ELLC
leak stands for the leakage energy per cycle consumed by the LLC. This value

is also an input parameter for the idealized model.

3.2. Core Slice

Ideal per-task core energy metering requires tracking per-task activity in all core
hardware blocks (e.g., Reorder Buffer, Issue Queues) to count the number of accesses
for each type. This would provide detailed information to accurately compute dynamic
energy by multiplying the per-type access counts by the dynamic energy for each
particular type of access (action):

Ecore
dyn, total(tki) =

J∑
j=1

K∑
k=1

Eblockj
actionk

× #actionblockj
k (tki), (4)

where Eblockj
actionk

is the energy per action of type k (e.g., read) in block j (e.g., register file),

which is assumed to be known; and #actionblockj
k (tki) stands for the number of such ac-

tions on such block performed by task i. This applies to both single- and multithreaded
(e.g., SMT) cores. In addition, J and K stand for the total number of blocks in the core
and types of actions (e.g., read, write, flush), respectively.

Static energy is measured in all of those blocks having nonnegligible energy con-
sumption when no action is performed. Blocks can be classified into two categories
depending on whether they allocate entries to tasks. Occupancy Blocks or oblocks allo-
cate entries to tasks, and hence their static energy can be split based on the occupancy
(e.g., precharge energy of first-level caches). Conversely, in resources without memory
or eblocks, no entries are allocated, and hence static energy can be evenly distributed
(e.g., issue queue selection when there are no ready instructions). Static energy is then
computed as follows:

Ecore
st, total(tki) =

ExecTime(tki )∑
x=1

⎛
⎝

J∑
j=1

Eeblock
st (x)

#T k(Ck)
+

L∑
l=1

Occoblock(tki) × Eblockl
st (x)

⎞
⎠ , (5)

where L stands for the number of oblocks, J for the eblocks, and Occblockl (tki) for
the average occupancy of block l by each task; Eblockl

st (x) stands for the static energy
consumed by idle ports or in idle cycles of block l in cycle x; and #T k(Ck) stands for the
number of tasks in core Ck.

Leakage energy can be easily tracked because it will be roughly constant throughout
all execution. If the core is single threaded, then it is trivial to identify the owner of
such energy. However, if the core is multithreaded, the occupancy per task in each
of the blocks must be tracked to properly distribute leakage energy, as shown in the
following equation:

Ecore
leak, total(tki) =

J∑
j=1

Occblockj (tki) × Eblockj
leak × ExecTime(tki), (6)

where Occblockj (tki) stands for the average occupancy of block j by task i; and Eblockj
leak

stands for the leakage per cycle of block j, which is assumed to be available.

3.3. Shared Bus

Ideal per-task bus energy metering requires tracking per-task accesses. Analogously to
the case of the LLC, there are different types of accesses with different dynamic energy
consumption. For instance, if a cache line is sent over the bus, the energy consumed

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:9

is higher than if just an address is sent, either because the cache line communication
sends more bits simultaneously or because it requires several consecutive transactions
to send all data over a bus narrower than a cache line. This would provide detailed
information to accurately compute dynamic energy by multiplying the per-type access
counts by the dynamic energy for each particular type of access (action):

Ebus
dyn, total(tki) =

K∑
k=1

Eactionk × #actionk(tki), (7)

where Eactionk is the energy per action of type k (e.g., cache line communication), which is
assumed to be known; #actionk(tki) stands for the number of such actions performed by
task i; and K stands for the types of actions. Note that different actions and energy per
action values may be used for different buses, such as the intracluster bus connecting
cores to their LLC and the intercluster bus connecting cores to memory. Nevertheless,
the same principle applies to compute dynamic energy.

Leakage energy cannot be attributed to any particular task in the cores (tasks do
not have any type of bus occupancy), so we evenly distribute it across all those tasks
that could use the particular bus: tasks in the cluster for intracluster buses and tasks
in the whole chip for the intercluster bus:

Ebus
leak, total(tki) = Ebus

leak × ExecTime(tki)
#T k(BUSk)

, (8)

where Ebus
leak is the leakage energy per cycle of the bus, which is assumed to be known;

and #T k(BUSk) stands for the number of tasks in using bus BUSk. Note that bus
energy is dominated by dynamic and leakage energy [Kumar et al. 2005] due to wiring,
repeaters, and latches, whereas static energy is negligible. We evenly distribute static
energy over tasks.

4. PTEM HARDWARE SUPPORT

Implementing the exact computation of the idealized energy model is expensive—if at
all feasible—due to the large number of events to be tracked and the frequency at which
they must be tracked. Therefore, we propose PTEM, our per-task energy metering
approach that trades off energy metering accuracy and implementation complexity.

4.1. Hardware Support for the LLC

The ideal model for the LLC tracks two main per-task parameters: access (activity)
counts per access type and cache occupancy. Our simplified PTEM model for the LLC
relies on the fact that LLC accesses are not frequent, so they can be tracked with full
accuracy. Conversely, tracking cache occupancy, which is required for static and leakage
energy estimation, would require counting how many cache lines each task owns every
cycle, which is expensive. Tracking the ownership of cache lines requires (i) tagging
each cache line with a task id; (ii) keeping a counter per task with the number of owned
cache lines (instant counter); and (iii) updating such counters on a replacement based
on the ownership of the evicted and fetched cache lines, increasing the counter of the
owner of the fetched line and decreasing the one of the owner of the evicted cache line.

In general, LLC access patterns and occupancy do not change abruptly. Similarly,
the occupancy per set is quite homogeneous for any particular program [Moreto
et al. 2008]. Therefore, we propose sampling the LLC occupancy in two different “di-
rections.” First, only some cache sets will be monitored, so they will be the only ones
for whom cache line ownership will be tracked. In order to avoid clustering effects due
to contiguous allocation of data in memory for any particular task, sampled sets are

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:10 Q. Liu et al.

located at a particular stride (e.g., only those sets whose x lowermost index bits are
zero are monitored). How many x lowermost bits are considered depends on the de-
sired sampling granularity. Second, the counters accumulating instant occupancy are
not updated every cycle, but at a lower frequency.

For instance, for an LLC with 1,024 cache sets, eight ways per set and a processor
with 8 cores, cache sets can be sampled at a granularity of 1 out of 16, and time sampling
occurs once every 256 cycles. In this case, the overhead of the LLC mechanism would
be as follows:

—8 instant counters (OccLLC
inst ) of 10 bits each for tracking instant occupancy (1,024 sets

× 8 ways/16 sample granularity = 512 lines sampled, so 10 bits are needed).
—512 3-bit owner identifiers for the 512 tracked cache lines. Note that all cache lines

in the sampled sets always have an owner for energy metering purposes. Thus, on a
context switch, the task being scheduled in becomes the owner of the cache lines used
by the task being scheduled out (using the same hardware context, or CPU index).

—8 cumulated occupancy counters (OccLLC
cum ) of 48 bits able to track the occupancy

during 248 × 28 = 256 cycles (48-bit counters and 256 cycles sampling frequency).

We assume that the number of cycles that a program takes to run is measured by
an existing PMC of the processor. Based on this hardware support, LLC occupancy is
obtained as follows:

OccLLC(tki) = OccLLC
cum (tki) × SmpFreq × SmpSets
#SetsLLC × ExecTime(tki)

, (9)

where SmpFreq is the sampling frequency (256 cycles in the example), SmpSets is
the set sample granularity (16 in the example), and #SetsLLC is the number of total
cache sets (1,024 in the example). The impact of sampling in both time and sets is later
analyzed in the evaluation section.

4.2. Hardware Support for the Core

Current processors (e.g., the IBM POWER7 [Floyd et al. 2011; Huang et al. 2012]) can
estimate the energy consumed by each core (even for SMT cores) based on a model that
uses different PMCs, voltage, frequency, and temperature as proxy. However, solutions
to accurately distribute core energy across tasks in SMT cores have not been developed,
although, in fact, multicores with SMT cores are becoming quite common [Floyd et al.
2011; Singhal 2008].

A real per-task core energy metering cannot be done with the ideal model presented
beforebecause this models tracks too many events and the occupancy of many blocks. In-
stead of such a bottom-up model, PTEM builds a top-down model. Under this top-down
model, during the execution of a workload, we first break down the energy consumed
into its main components, namely, dynamic, static, and leakage, and in a second step,
we break down the energy of each component per task.

Step 1: Deriving static, dynamic, and leakage energy components. We start determin-
ing the maximum (Ecore

max ) and minimum energy (Ecore
min ) consumption in a given time

interval. The core maximum energy consumption, Ecore
max , can be determined by run-

ning a high-power benchmark, a.k.a. power virus [Naffziger et al. 2005]. Ecore
max can be

decomposed as follows:

Ecore
max = MaxDynEcore + LeaEcore, (10)

where MaxDynEcore is the maximum dynamic energy of the core, and LeaEcore is the
leakage energy of the core that can be obtained by measuring core power when the
core is in halt mode. In this formula, we assume that all blocks are fully used and

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:11

thus no static energy is consumed. In reality, there will be still some static energy, but
its relative weight with respect to dynamic energy is negligible in a maximum energy
scenario, so the loss of accuracy introduced by such an assumption is rather low.

The core minimum energy consumption, Ecore
min , can be obtained running a low-power

benchmark comprised, for instance of no-ops. Ecore
min can be decomposed as follows, where

MaxStaEcore is the maximum static energy of the core:

Ecore
min = MaxStaEcore + LeaEcore (11)

In this formula, we assume that all blocks are idle so that no dynamic energy is
consumed. Under that scenario, all activity in the core is static energy, as this activity
is not produced by tasks activity. This is the scenario in which the static energy is the
highest, MaxStaEcore. From Equations (10) and (11), we can derive MaxDynEcore and
MaxStaEcore.

Let’s assume that the energy consumed by a workload during an interval j is Ecore
j =

LeaEcore + DynEcore
j + StaEcore

j . In order to determine which fraction of Ecore
j is static,

dynamic, and leakage, we proceed as follows. Leakage is roughly constant in all runs,
so we take the value derived earlier, LeaEcore.

We assume that all idle blocks have the same static energy consumption when idle
with respect to their dynamic energy consumption. That is, for all blocks, the relation
between static and dynamic energy is obtained as StaDynRatio = MaxStaEcore

MaxDynEcore . Hence,
the static energy for each block is StaDynRatio of its dynamic energy.

During the execution of a workload in a given interval, a fraction of the resources
will perform useful activity, thus consuming dynamic energy in the interval (DynEcore

j ).
The remaining resources do not perform any useful activity consuming static energy.
The difference MaxDynEcore − DynEcore

j provides the amount of dynamic energy not
consumed in the execution of the workload with respect to the scenario in which the
dynamic energy is maximum. The static energy StaEcore

j is a fraction of that difference:
StaEcore

j = (MaxDynEcore − DynEcore
j ) × StaDynRatio.

Overall, Ecore
j can be derived as follows:

Ecore
j = LeaEcore + DynEcore

j + StaEcore
j (12)

= LeaEcore + DynEcore
j + (

MaxDynEcore − DynEcore
j

) × StaDynRatio,

where only DynEcore
j is unknown and can, therefore, be derived.

Step 2: Breaking down static, dynamic, and leakage energy components per task.
Per-task energy distribution is done as follows:

—Dynamic energy. Since tracking all events in the core is unaffordable, we use a
simplified model based on the number of instructions fetched per task.

—Static energy. Most static energy in the core comes from register files and issue
queues due to their large number of ports and high static energy consumption per
port. Such energy cannot be attributed to any particular task, so we evenly split
static energy across tasks.

—Leakage energy. Leakage energy mainly comes from first-level (L1) caches, and their
occupancy correlates quite well with the occupancy of some other blocks (e.g., branch
predictor tables, translation lookaside buffers). Thus, we track task occupancy in L1
caches. We need the same hardware support as in the LLC. We consider that L1 data
and instruction cache occupancies have the same weight.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:12 Q. Liu et al.

Table I. PTEM Hardware Requirements

Block Energy Figures Extra Logic

ELLC
action, #actionLLC

k (tki), OccLLC
inst (tki),

LLC OccLLC
cum (tki), IdleTime(LLC),

ELLC
st , ELLC

leak , LLC Cache line owner’s table

InstFetch, InstFetch(tki),
Ecore

max , Ecore
min , OccIC

inst(tki), OccIC
cum(tki),

Core OccDC
inst(tki), OccDC

cum(tki),
LeakEcore IC Cache line owner’s table,

DC Cache line owner’s table,
Ecore

total(tki)

Intracluster bus Einbus
action, Einbus

leak #actioninbus
k (tki)

Intercluster bus Eoutbus
action , Eoutbus

leak #actionoutbus
k (tki)

Therefore, task energy in the core is measured as follows for interval j:

DynEcore
j (tki) = DynEcore

j × InstFetchj(tki)/InstFetchj (13)

StaEcore
j (tki) = StaEcore

j /#T k (14)

LeaEcore
j (tki) = LeaEcore

j × OccIC(tki) + OccDC(tki)
2

, (15)

where InstFetchj and InstFetchj(tki) are the total and task i fetched instructions in
interval j, respectively; and OccIC(tki) and OccDC(tki) stand for the task i occupancy
in the data and instruction caches. Then, we only need to cumulate the energy of the
task across all intervals:

Ecore
total(tki) =

ExecTime(tki )
SmpFreq∑

j=0

(
DynEcore

j (tki) + StaEcore
j (tki) + LeaEcore

j (tki)
)

(16)

4.3. Hardware Support for the Buses

The ideal model for the buses only needs to track access (activity) counts per access type
per task. Our simplified PTEM model for the buses relies on the fact that analogously,
as for the LLC, bus accesses are not frequent, so they can be tracked with full accuracy.
In addition, leakage energy is tracked trivially by considering how many cycles each
thread runs and how many threads share each bus.

4.4. Putting It All Together

PTEM has some hardware overhead, as it requires setting up a reduced set of addi-
tional counters similar to those PMCs currently available in most high-performance
processors. PTEM support, analogously to PMCs, does not interfere with the execution
of programs since it is not in any critical path.

Table I summarizes the energy figures required from the chip vendor and the extra
logic (counters, tables) that must be set up. Energy figures can be either obtained by
running appropriate benchmarks or estimated using test chips or power models. Note
that the (tki) suffix in some counters indicates that they must be replicated for each
task. Analogously, action, in the case of the LLC, stands for the six different LLC ac-
tions considered in this article: read/write hit, read/write miss (no dirty line replaced),
read/write miss (dirty line replaced), and for the two different bus actions considered

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:13

in this article in the case of the buses: address communication and cache line commu-
nication. Inbus and outbus refer to the intra- and intercluster buses, respectively, in
the table.

Regarding the software interface, the OS is responsible for keeping track of the
energy consumed by every task in the system. PTEM exports a special register, called
Energy Metering Register (EMR), that acts as an interface between PTEM and the
OS. The OS can reset the EMR (typically when a task is scheduled in) and access
that register for collecting the energy estimates made by PTEM (typically when a task
is scheduled out). In general, these actions happen during context switches. In the
event of a context switch, the OS reads the EMR using the hardware-thread index
(or CPU index) of the scheduled-out task (Tout). Then, the OS aggregates the energy
consumption value received in the task struct of Tout.

Right after the new task (Tin) is scheduled in, the LLC and L1 caches still hold some
lines belonging to Tout. These lines are tagged with the same identifier as the one as-
signed to Tin. Although PTEM will attribute static and leakage energy consumption
to Tin, we have empirically observed that this occurs during less than 1 million cycles
(often much less), since cache lines belonging to Tout are quickly replaced and thus
evicted from LLC. If the processor operates at 2GHz, 1 million cycles elapse in
0.5ms.Context switches, instead, occur at much higher granularity. The OS quanta
can vary from aggressive values (e.g., 4ms) to more conservative ones (e.g., 100ms) for
common Linux and Windows implementations. Moreover, on a context switch, many
tasks being run may not be scheduled out since the number of hardware contexts in-
creases in pace with the number of cores. Thus, only tasks with lowest priority are
expected to be scheduled out, which further reduces effective context switch frequency
for most of the tasks.

The time that the OS spends working on behalf of a given task, for instance serving
a system call, is attributed to the caller task. Similarly, the energy consumed by the
OS on housekeeping activities is evenly attributed to all running tasks. Nevertheless,
if other policies attributing OS energy to tasks are devised, then PTEM provides the
hardware support needed for that purpose.

5. EXPERIMENTAL SETUP

We use an enhanced version of SMTSim [Tullsen et al. 1998] extended with power
models analogous to those of Wattch [Brooks et al. 2000]. Wattch-like power models are
built on top of the CACTI 6.5 simulation tool [Muralimanohar and Balasubramonian
2009]. CACTI is a flexible tool modeling delay, energy (dynamic and leakage), and area
of cache memories and SRAM-based arrays. Power models for functional units have
been updated to use modern designs.

We assume a clustered multicore architecture where each cluster consists of a set
of cores, with each core having private data and instruction first-level caches, plus a
shared on-chip second-level cache accessed through a shared bus. We refer to such
cache as LLC. Details about the configuration can be found in Table II. All clusters
are connected to memory through a shared bus (see Figure 2). Several studies show
that hierarchical bus configurations scale quite easily to large systems and provide a
good area-performance trade-off, while retaining many of the advantageous features
of simpler bus arrangements [Salminen et al. 2007]. In the same line, other studies
show that bus-based networks can significantly lower energy consumption and simplify
network protocol design and verification with no loss in performance [Udipi et al. 2010].

We consider a processor configuration with clusters consisting of 4 cores, with those
cores being two-threaded SMT (4C2S). We first perform an intracluster evaluation
for this 4C2S setup to facilitate understanding of PTEM behavior. Then, for the full

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:14 Q. Liu et al.

Table II. Processor Configuration

Parameter Description

Chip details

Cluster count 1, 2, 4, and 8
Core count 4 cores per cluster; 1-, 2-thread SMT
Supply voltage 1.0V
Technology 65nm

Core details

Core type Out-of-order
Fetch, decode, issue, 2 instr/cycle
commit bandwidth
Branch predictor Hybrid 256B Gshare
Branch target buffer 1,024 entries, 4-way
Return address stack 256 entries
Reorder buffer size 128 entries
Issue queues size 32/32/32 entries for INT/FP/Load-store queues
Register file 80 INT, 80 FP
Functional units 2 INT ALU (1 cyc), 1 mult (4 cyc), 1 div (7 cyc)

1 FP ALU (6 cyc), 1 mult (6 cyc), 1 div (17 cyc)
Instruction L1 32KB, 4-way, 32B/line (2 cycles hit)
Data L1 32KB, 4-way, 32B/line (2 cycles hit)

Instruction TLB 256 entries fully associative (1 cycle hit)
Data TLB 256 entries fully associative (1 cycle hit)

Shared L2 Cache

Unified L2 2MB, 16-way, 64B/line (3 cycles hit, 300 cycles miss)

processor evaluation, we consider setups of four and eight clusters, with two-way SMT
4-core (4C2S) clusters. Thus, 32- and 64-threaded setups are considered, respectively.

Benchmarks. In addition to traces from a real HPC application, detailed in Section 9,
we use traces collected from the whole SPEC CPU2006 benchmark suite using the
reference input set. Each trace contains 100 million instructions, selected using the
SimPoint methodology [Sherwood et al. 2001]. Using these benchmarks, we generate
different workloads with different numbers of benchmarks.

Running all N-task combinations is increasingly time consuming, as the number
of combinations is too high. We classify benchmarks into two groups depending on
their memory behavior. Benchmarks in the memory group (denoted MEM) are those
presenting an LLC miss rate higher than 1%—that is, mcf , milc, lbm, libquantum,
soplex, gcc, bwaves, and omnetpp. The rest of the benchmarks are CPU (ILP) bounded
and are denoted ILP. From these two groups, we generate three workload types denoted
I, M, and X, depending on whether all benchmarks in a cluster belong to group ILP,
MEM, or a combination of both.

We generate eight workloads per group and processor setup. Benchmarks in each
workload are randomly picked out from all benchmarks of the corresponding type. In
the case of X, half of the benchmarks belong to ILP and the other half to MEM. We do
not put any constraint on whether benchmarks can repeat in a particular workload, be-
cause the random selection of benchmarks is always performed out of the corresponding
(original) group of benchmarks.

Metrics. In order to evaluate the accuracy of PTEM, as a reference, we always use
the estimates that we would obtain with the idealized model. In each experiment,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:15

Fig. 3. Per-task LLC cache energy breakdown and access/occupancy rates when executing mcf and gcc in a
single-threaded 2-core configuration.

we measure the off estimation or prediction error of each model with respect to the
idealized model, which is computed as follows:

PredictionError =
∣∣∣∣1 − EnergyEstimatemodel

EnergyEstimateideal

∣∣∣∣ (17)

6. INTRACLUSTER EVALUATION

We evaluate the accuracy of our hardware support for per-task energy metering in-
crementally by analyzing the accuracy at the intracluster level. Once we analyze the
accuracy of the PTEM models for the cache and SMT core, the next section shows
the results when we scale the number of cluster to sum up a total of 16/32 cores
(32/64 threads). Due to the relatively low energy contribution of buses, intracluster bus
energy is reported as part of the LLC energy.

6.1. Utilization-Based Per-Task Energy Consumption

The key idea of our per-task energy metering approach is to make the energy attributed
to a task proportional to each resource—in particular, to its activity and the occupancy
of a given resource. If both activity and occupancy are accurately measured, the energy
consumption can be accurately attributed to each running task.

Figure 3 shows the fraction of LLC energy consumption attributed to each benchmark
in a 2-core workload (gcc+mcf ) by using our ideal model presented in Section 3.

We observe that the activity does not necessarily reflect the occupancy of the LLC.
In the figure, we can see that gcc, with 63.5% accesses, occupies less than 46.2% of
LLC lines. That shows that a given workload may have very different consumption
profiles in terms of dynamic energy versus static and leakage energy. Therefore, it is
important to measure both activity and occupancy in order to improve the estimation
accuracy. For instance, let us look again at the gcc case. If we estimate the energy only
proportionally to the activity, LLC energy will be significantly overestimated for gcc
and underestimated for mcf .

6.2. PTEM Energy Estimation

In this section, we show the accuracy of the models presented in Section 3 for the core
and the LLC at cluster level. In particular, we measure the off estimation of each model
with respect to the idealized model. We include the Evenly Split (ES) model, which
uniformly splits the energy among all running tasks regardless of their occupancy and
activity in the processor resources. This is indeed the common approach in current
methods only considering execution time.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:16 Q. Liu et al.

Fig. 4. Per-task core energy prediction error rate (C4S2).

Table III. Maximum Per-Task Prediction Error

Core
I X M

PTEM 8.8% 9.6% 10.2%
ES 11.9% 28.3% 21.9%

LLC
I X M

PTEM 25.6% 4.0% 4.4%
ES 1112.6% 3593.8% 62.0%

Cluster
I X M

PTEM 6.6% 9.2% 7.5%
ES 25.8% 58.5% 23.6%

Core Energy Consumption Prediction. Figure 4 shows the prediction accuracy for the
core under the setup C4S2. Each bar shows the average error of all eight benchmarks
in the workload.

In general, PTEM clearly outperforms ES by providing tighter energy predictions.
In particular, PTEM incurs a prediction error of up to 6.9% across workloads, whereas
it is higher than 13% for the ES model. Predictions are more accurate for I workloads
due to the highly homogeneous behavior of programs. Irregular workloads in X and M
groups (some benchmarks are more memory bound than others in the M group) lead
to slightly higher error for PTEM and larger error for the ES model. This can also
be seen when comparing the maximum error across individual tasks in the workloads
(see Table III). PTEM maximum error is highly constant across workload types (9% to
10%), whereas ES model error is particularly high for X and M workloads (28% and
22%, respectively).

LLC Energy Consumption Prediction. Figure 5 shows the effect of sampling sets and
period on the average LLC energy prediction accuracy for a 4-core configuration. The
y-axis represents the sample period measured in processor cycles (e.g., 10K stands for
10,000 cycles). The x-axis is the sampling set configuration. For instance, 1e8 means
that we sample one set every eight sets.

We observe that the curve has a higher slope in the x-axis (set sampling). For instance,
for a sampling distance of 10K cycles, the prediction error rate raises from less than

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:17

Fig. 5. Per-task LLC cache energy prediction with sample set and period in a 4-core configuration.

Fig. 6. Per-task LLC cache energy prediction error rate (C4S2).

1% to almost 8% as the sample set reduces from 1e1 to 1e512 sets. Instead, the sample
period (y-axis) has limited effect on accuracy. With 1e8 sampled sets, the prediction
error only raises 0.2% as the period increases from 1K to 10M cycles. Considering
that the hardware cost of set sampling varies significantly, we choose a moderate
cost configuration in which we use a 1e2 and 10K cycle sampling period. This is the
configuration that we use to measure the energy per task in the LLC in the following
sections.

Figure 6 shows the LLC prediction error of each model under the C4S2 setup.
Prediction error corresponds to the average error across benchmarks in each work-
load. We observe that PTEM largely outperforms the ES model in terms of accuracy
for all workloads and processor setups.

The ES model is highly inaccurate in general—more than 103% on average. The ES
model accuracy is worse for I and X workloads due to the highly heterogeneous memory
behavior of the tasks. In fact, even in I workloads, behavior is highly heterogeneous
because the relative LLC access frequencies and occupancies are very different across
tasks. ES accuracy improves for M workloads where LLC occupancy and access fre-
quency are more homogeneous. Our PTEM model, in contrast, has a considerably low
prediction error—less than 2% on average. Further, as shown in Table III, maximum
error across all tasks for PTEM is 25.6% for I workloads because their low LLC utiliza-
tion may make spatial sampling to experience some error. However, as long as M tasks

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:18 Q. Liu et al.

Fig. 7. Cluster per-task energy prediction error (C4S2).

are in place (X and M workloads), PTEM accuracy is very high (maximum error is
always less than 4.5%). On the other hand, ES model error is huge (more than 3,000%),
especially for I and X workloads due to the highly heterogeneous memory behavior of
the tasks in the workloads.

Cluster Energy Consumption Prediction. Next, we show per-task energy metering
accuracy at cluster level, including core and LLC energy. Figure 7 shows the average
prediction error in each workload for a cluster consisting of four two-way SMT cores.
First, we observe that prediction error for the whole cluster is very similar to that of the
cores only (see Figure 4). This is so because the LLC energy contribution is typically
in the range of 15% to 20% due to the high activity of the cores (8 threads running).
Therefore, core prediction error dominates the overall prediction error. As expected, the
ES model obtains worse results than PTEM in all workload groups, with an average of
more than 10%. The prediction error for PTEM is less than 3% on average across all
workloads. Furthermore, we observe that the ES model error grows for X workloads
since different threads perform highly heterogeneous activities. ES model average error
is higher than 17% for one of the workloads. Instead, PTEM error remains quite stable
across workloads and never exceeds 4.5%.

Per-benchmark data in each workload show that the maximum off estimation that
PTEM produces is 9.2% for one of the benchmarks in the X workloads (see Table III;
recall that we use 8-benchmark workloads and evaluate 24 different workloads, count-
ing 192 benchmarks in total). For homogeneous workloads (I and M), the maximum
error observed is only 7.5%. Instead, the maximum error for the ES model is 58.5%.
Maximum error is lower for homogeneous workloads but is still in the order of three to
four times that of our PTEM model.

6.3. PTEM Energy and Area Overhead

PTEM requires few hardware counters to track LLC and core and bus activity, together
with small arrays tracking the ownership of some cache sets in the LLC and L1 caches.
For the sake of consistency, the energy of those components has been modeled using
CACTI. In order to model counters, components such as internal cache buffers have
been used, as they are comparable to latches in the pipeline.

Results for the 4-core two-way SMT configuration show that the total energy over-
head for PTEM is less than 0.3%. Most of the overhead is due to the dynamic energy

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:19

Fig. 8. Core per-task energy prediction (C4S2) with ES, PTEM, and the linear model, including the average
error and maximum error.

of the ownership id arrays in LLC and L1 caches. Relative overheads do not change
noticeably for different core counts. In fact, the relative overhead slightly decreases as
the number of cores increases, which proves that PTEM scales well.

We have obtained the area overhead using CACTI with the following assumptions:
LLC cache occupies 50% of the area in a 8-core configuration, counter bitcells have the
same size as input/output buffers in caches (so they are large), and ALUs performing
power computations use low-cost designs such as iterative multipliers and dividers
(their latency is not critical, as they are seldom used). We consider SMT cores, as they
require more bits to track ownership and more counters to track per-task activity.
Overall, we obtained that total area overhead is 0.49% (4 cores), 0.63% (8 cores), 0.75%
(16 cores), and 0.82% (32 cores), proving that PTEM area cost is rather low. The area
breakdown for the 32-core configuration is 0.20% LLC, 0.48% DL1+IL1, 0.09% core
without DL1/IL1, and 0.05% bus. Similarly, the breakdown for the 4-core configuration
is 0.22% LLC, 0.20% DL1+IL1, 0.04% core without DL1/IL1, and 0.03% bus. Thus,
those arrays tracking the cache line ownership and the counters tracking per-task
activities in caches account for most of the area overhead, which anyway is rather low.

Overall, PTEM imposes neither limitations on the number of threads that can be run
simultaneously in the processor (low and scalable hardware overheads) nor limitations
on the number of tasks that the OS can keep active simultaneously (a single counter
per task needs to be tracked by the OS).

6.4. Linear Regression Models

Since linear regression models have been widely used to estimate core and system-level
energy [Bellosa 2000; Bircher and John 2012; Shen et al. 2013], we also include it in
our discussion. Although these models typically rely on existing PMCs, so no extra
hardware support is needed, their accuracy is limited and highly depends on whether
training workloads are similar to those at deployment.

Coefficients of the linear regression model are obtained using our idealized model
as the reference model, because no other reference model exists. We provide the linear
regression with all per-task event counters in our simulator, including number and
type of instructions fetched, executed, committed, data and instruction cache hits and
misses, and so forth, despite that PMCs may not exist for many of those events.

We have used a 4-core 2-thread SMT setup. The training set consists of a workload
with eight benchmarks randomly chosen from the SPEC CPU2006 for each of the
threecategories described before: I, X, and M. The evaluation workload consists of
eight workloads generated analogously for each category.

As shown in Figure 8, the linear regression model performs worse than PTEM. Linear
regression is less accurate than ES for I workloads and slightly more accurate for X

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:20 Q. Liu et al.

Fig. 9. System per-task energy prediction error.

and M workloads. The average error for the linear regression model is 7.8%, similar to
that for ES. Furthermore, we have observed that maximum estimation error is higher
for the linear regression model than for PTEM and ES. The reason for those large
estimation errors for the linear regression model is twofold: (i) its dependence on the
training set and (ii) the fact that PMCs do not take into account occupancy, which is
the parameter determining per-task leakage and static energy in many components.

Finally, although not shown in the article, results for other components (e.g., LLC)
show similar trends because of the same limitations pointed out for the core. For
instance, Figure 3 shows the dependence of LLC leakage and static energy on occupancy
rather than on accesses.

7. PTEM FOR HIGH CORE COUNTS

In this section, we evaluate the accuracy of our PTEM model for large multicores
with four and eight clusters, counting 16 and 32 two-way SMT cores, respectively. For
that purpose, we have run experiments with four different types of workloads: pure I
workloads, pure M workloads, X workloads (with four I and four M tasks per cluster),
and hybrid workloads where half of the clusters run pure I workloads and the other
half run pure M workloads.

Memory bandwidth for the eight-cluster configuration has been increased by setting
up two memory controllers instead of one able to issue memory commands in parallel
as long as they do not conflict in any particular bank. This has been done in order to
not overdesign memory bandwidth for the 4-core setup and to not underdesign memory
bandwidth for the 8-core setup. The behavior of the different workloads is such that
the relative execution time increase is low with respect to the single-cluster setup since
little memory contention is suffered in I tasks, and the higher contention paid by M
tasks is still low in relative numbers.

Results in Figure 9 show that PTEM achieves higher accuracy for pure I workloads
and hybrid I-M workloads. This is so because, as shown previously, PTEM achieves
higher accuracy for pure I clusters than for X or M clusters. Instead, pure M and X
configurations show slightly higher prediction error. Nevertheless, the average error is
low and, in the case with the largest core count (eight clusters), the average error is
less than 3.5% regardless of the workload type. In the case of the ES model, prediction
error is significantly higher than that of PTEM, being higher than 12% on average for
X workloads. Other configurations show lower error since they mitigate the per-core

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:21

Fig. 10. Per-benchmark CPI variation across all two-task workloads in which the benchmark runs. Bench-
marks sorted in increasing average CPI. Chart shows max, min, higher-quartile and lower-quartile values.

Fig. 11. Per-benchmark EPI variation across all two-task workloads in which the benchmark runs.

prediction error. Nevertheless, PTEM largely improves accuracy with respect to the ES
model across cluster counts and workload types, and opposed to the ES model, PTEM
error decreases as the cluster count increases.

8. CASE STUDY: CHARACTERIZATION OF ENERGY AND PERFORMANCE VARIATION

Interferences among co-running tasks when accessing shared hardware resources in
a multicore (a.k.a. intertask interferences) result in different per-task performance
depending on its co-runners [Fedorova et al. 2004]. In this section, we use our proposed
PTEM model to show how the energy consumption of each task also significantly varies
due to intertask interferences, and prove that such energy consumption variation cannot
be directly inferred from performance variation.

We focus on two-task workloads, which we run in a two-way SMT core setup of
our baseline configuration. We construct all possible pairs of benchmarks from SPEC
CPU2006 suite, recording for each benchmark its energy consumption in each of
the two-task workloads in which it runs. The variation that each benchmark suf-
fers across each two-task workload is illustrated in terms of Cycles Per Instruction
(CPI) in Figure 10 and in terms of Energy Per Instruction (EPI) in Figure 11. Re-
sults have been normalized with respect to the average CPI and EPI, respectively,
for the sake of readability since CPI ranges between 1.03 and 11.36 cycles/instr, and

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:22 Q. Liu et al.

Table IV. Average CPI (cycles/instr) and EPI (nJ/instr) for All Benchmarks, Sorted from Lowest to Highest
Average CPI from Left to Right and from Top to Bottom

MEM benchmarks are shown in bold font.

416.gamess 444.namd 436.cactusADM 447.dealll 454.calculix
C PI 1.03 1.03 1.05 1.05 1.10
EPI 0.35 0.29 0.40 0.36 0.32

456.hmmer 464.h264ref 458.sjeng 401.bzip2 435.gromacs
C PI 1.22 1.23 1.24 1.28 1.30
EPI 0.40 0.48 0.37 0.46 0.41

453.povray 473.astar 400.perlbench 437.leslie3d 410.bwaves
C PI 1.34 1.34 1.41 1.42 1.46
EPI 0.41 0.50 0.44 0.50 0.55

445.gobmk 482.sphinx3 434.zeusmp 470.lbm 403.gcc
C PI 1.51 1.51 1.60 2.19 2.58
EPI 0.49 0.50 0.56 0.92 0.89

471.omnetpp 433.milc 450.soplex 462.libquantum 429.mcf
C PI 2.83 3.22 3.88 4.90 11.36
EPI 0.95 0.89 1.14 1.26 2.99

EPI between 0.29 and 2.99 nJ/instr. Benchmarks are sorted from lowest to highest
CPI.

We observe that CPI variation mostly concentrates in the range [+20%, –40%]
with respect to their average for most of the benchmarks, whereas EPI concen-
trates in the range [+30%, –20%]. Hence, in both cases, variations are signifi-
cant; therefore, we can conclude that performance and energy consumption strongly
depend on the co-runners. In terms of performance variation, MEM benchmarks
(mcf , milc, lbm, libquantum, soplex, gcc, bwaves, and omnetpp) are among those
with the lowest performance variation. For instance, lbm and omnetpp, both in the
MEM category, are the ones exhibiting the lowest performance variation across all
benchmarks.

However, in terms of EPI, this is not the case: typically, EPI variation for ILP bench-
marks decreases, whereas MEM benchmarks have higher EPI variation than CPI
variation. For instance, libquantum, which falls in the MEM category, is the bench-
mark exhibiting highest EPI variation. Analogously, mcf , soplex, gcc, and omnetpp also
experience a significantly higher variation increase in terms of EPI than CPI. In con-
trast, astar has a significant variation in CPI but reduced variation in EPI. Thus, the
relation between performance and energy variation is not obvious. We note that the
two benchmarks in the middle of the x-axis, astar and perlbench, both of them being
ILP, have opposite trends across metrics: EPI variation for astar is much lower than
its CPI variation. Conversely, EPI variation for perlbench is much higher than its CPI
variation.

We have also studied absolute EPI and CPI values, shown in Table IV. Values are
sorted based on their CPI. We observe that MEM benchmarks have higher CPI than
ILP ones, since they access memory more often and thus experience higher latencies.
Few ILP benchmarks have higher CPI than some of the MEM ones. Such higher CPI for
MEM benchmarks translates into higher average EPI. In fact, only zeusmp (ILP) has
slightly higher EPI than one of the MEM benchmarks (bwaves). The main reason for the
increased EPI of MEM programs is the fact that they execute longer and occupy more
resource space, which translates into higher static and leakage energy. However, the
particular interaction across different programs in shared resources leads to different
behavior in terms of performance and energy, as it has been shown in Figures 10 and
11 in terms of CPI and EPI variability. Therefore, performance cannot be used as a

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:23

suitable metric to derive per-task energy consumption. Quite the opposite, these results
confirm that our proposed energy metering technique, PTEM, is required to achieve
accurate per-task energy metering.

9. CASE STUDY: LARGE-SCALE PARALLEL APPLICATIONS

9.1. Multithreaded Applications

In our per-task energy measuring approach, the energy accounted to each thread is
saved into a special purpose register per thread, denoted EMR. Section 4.4 shows how
the OS handles the EMR of each task.

The support required for PTEM in the case of multithreaded applications is simple.
In fact, PTEM logic does not need to be changed. Changes are only needed on how
the OS handles the EMR: the OS or the parallel runtime simply needs to aggregate
the energy consumption estimates stored for all threads belonging to the same multi-
threaded application EmeterApp = ∑N

i=1 EMRi, where N is the number of threads of the
application. When a cache line is shared in the LLC across different threads, its energy
(static and leakage) must be accounted once, either by splitting it across the threads
sharing it or by attributing it to one of those threads. In particular, we identify as
owner the thread fetching the cache line to the LLC. Whether this energy is attributed
to one thread or another of the parallel application is irrelevant, since the energy of all
threads will be finally aggregated to provide a single figure for the whole application.
However, per-task energy can also be monitored individually and periodically during
the execution so that such information can be later used to optimize the energy profile
of the application. This is better illustrated in the next subsection through a particu-
lar example. The information provided helps in understanding the effects in terms of
energy of unbalanced thread execution times.

9.2. Weather Research and Forecasting Model

In this section, we evaluate our energy metering mechanism with real traces from a
parallel HPC application running on an actual supercomputer: wrf. The Weather Re-
search and Forecasting (wrf) model [Michalakes et al. 2004] is a mesoscale numerical
weather prediction system designed to serve both operational forecasting and atmo-
spheric research needs. In this experiment, we use the nonhydrostatic mesoscale model
dynamical core. Simulating all threads of the parallel MPI application implies a signif-
icant amount of simulation time, as these applications usually run for days or weeks
on a supercomputer. We use an automatic mechanism to choose the most representa-
tive computation regions to be traced and simulated with a cycle-accurate simulator
[Gonzalez et al. 2011]. This simulation methodology uses nonlinear filtering and spec-
tral analysis techniques to determine the internal structure of the trace and detect
periodicity of applications. Afterward, we use a clustering algorithm to determine the
most representative computation bursts inside an iteration of the application.

We obtain four representatives for the five computation phases that compose the
64-thread MPI application. We have used these reduced trace files to feed the cycle-
accurate architecture simulator described in Section 5. We simulate all threads sharing
the LLC cache (four threads in this case study) in a CMP architecture (single-threaded
cores). When a thread finishes executing, it waits until all other threads have also
finished.

Figure 12 shows the evolution of the per-task energy breakdown in the CMP between
two barrier communications. Note that energy components are stacked in the plot. At
the beginning, thread 0 (Th0) consumes more energy than the other threads due to its
higher activity (it behaves as an I task). Conversely, Th1, Th2, and Th3 behave as M
tasks; therefore, their energy consumption is dominated by static and leakage energy.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:24 Q. Liu et al.

Fig. 12. Stacked power consumption evolution for wrf between two barriers.

Eventually, Th3 reaches the barrier and stops consuming dynamic energy. Th3 quickly
loses its LLC lines, which decreases its leakage energy. Hence, Th3 energy consumption
from this point onward corresponds to its core static and leakage energy. Behavior for
Th1 and Th2 is analogous to that of Th3, but it takes longer for them to lose their LLC
cache lines because they reach the barrier before 40ms and lose their LLC cache lines
after 50ms. Th0, however, behaves as an I task for 52ms. Then it enters into an M
phase, thus decreasing its dynamic energy. At this point, Th0 starts increasing its LLC
occupancy, evicting Th1 and Th2 lines until it occupies the whole LLC after 57ms. This
makes the leakage energy contribution of Th0 to grow noticeably.

Notice that our energy metering mechanism does not need to be aware of the syn-
chronization among threads of a multithreaded task. For example, if a thread is busy
waiting on a lock, even if it is not progressing during that time, the thread is using
the processor and it will be metered accordingly. In contrast, if the thread goes to sleep
until the lock is released, the core will go to low power mode and less energy will be
metered to the thread.

10. VOLTAGE AND TEMPERATURE AWARE ENERGY METERING

Voltage and temperature influence energy consumption, so they cannot be neglected in
general. IBM POWER7 [Floyd et al. 2011; Huang et al. 2012] power proxy is already
aware of voltage and temperature, which are obtained through sensors. The power
proxy scales dynamic, static, and leakage energy with constant factors associated to
different voltage/temperature combinations. However, such proxy does not discriminate
energy in a per-task basis, thus it cannot directly be used for PTEM.

Instead, a potential implementation for PTEM could track activities in a per-voltage
and per-temperature basis, in such a way that the number of counters required matches
the number of combinations of voltage and temperature ranges. For instance, if our
chip can operate at 0.8V, 0.9V, and 1.0V, and temperature ranges considered are
320K–330K, 330K–340K, and 340K–350K degrees, then nine counters are required
for each event to consider all combinations. Owner id tags in caches and occupancy
counters will not need to be replicated (note that those arrays are responsible for most
of the PTEM overheads).

Although voltage and temperature parameters may impact energy consumption
of PTEM, their variability is expected to decrease with technology scaling and the
increasing number of cores per chip. In particular, smaller geometries suffer from

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:25

process variations, which limit the minimum voltage that can be used [Bickford et al.
2008]. On the other hand, power efficiency and heat dissipation push for lower oper-
ating voltages. Thus, although dynamic voltage scaling techniques may still exist in
the future, the range of voltages is expected to decrease, thus leading to fewer voltage
levels. Temperature variation may be significant across the chip, but cores will become
smaller with technology scaling, thus exhibiting lower in-core temperature variation
due to the fact that meaningful temperature gradients occur at a nearly constant min-
imum distance [Donald and Martonosi 2006]. For instance, a difference of 1 degree
canonly be observed at distances above 0.2mm, and cores may occupy less than 1mm2

in the near future. Similarly, LLC will remain in a narrow range of temperatures due
to its relatively low activity. Moreover, maximum allowed temperature decreases due
to technology scaling, because smaller devices age faster and aging has an exponential
dependence on temperature.

11. CONCLUSIONS

In this article, we look at the challenges and opportunities associated with accurate
per-task energy metering. As shown in this work, existing approaches based on an
even distribution of energy across tasks are highly inaccurate. Therefore, we propose
(i) a fair reference approach to distribute energy across tasks and (ii) an affordable
implementation, PTEM, that tracks task activity and resource utilization at very low
cost (below 0.3% energy overhead and 0.85% area overhead).

PTEM is shown to provide highly accurate per-task energy estimates with an average
error of 3.1% for SMT multicore configurations and 2.1% for single-threaded multicore
configurations. We further discuss the required changes, at both the hardware and
the software levels, to provide such an accurate, yet implementable, per-task energy
metering mechanism.

Finally, we show how to use PTEM in the context of parallel applications and show
a case study where PTEM provides the required information to minimize the energy
consumption of servers and cloud computing facilities.

REFERENCES

ABELLA, J., GONZÁLEZ, A., VERA, X., AND O’BOYLE, M. 2005. Iatac: a smart predictor to turn-off l2 cache lines.
ACM Trans. Archit. Code Optim. 2, 1, 55–77.

BARROSO, L. 2005. The price of performance. ACM Queue 3, 7, 48–53.
BARROSO, L. AND HÖLZLE, U. 2007. The case for energy-proportional computing. IEEE Computer 40, 12,

33–37.
BELADY, C. AND MALONE, C. 2006. Data center power projections to 2014. Proceedings of the Intersociety

Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, 439–444.
BELLOSA, F. 2000. The benefits of event: driven energy accounting in power-sensitive systems. In 9th

ACM SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating System. EW 9,
37–42.

BERTRAN, R., BECERRA, Y., CARRERA, D., BELTRAN, V., GONZÍLEZ, M., MARTORELL, X., NAVARRO, N., TORRES, J., AND

AYGUADÉ, E. 2012. Energy accounting for shared virtualized environments under dvfs using pmc-based
power models. Future Gener. Comput. Syst. 28, 2, 457–468.

BICKFORD, J., ROSNER, R., HEDBERG, E., YODER, J., AND BARNETT, T. 2008. Sram redundancy - silicon area
versus number of repairs trade-off. In IEEE/SEMI Advanced Semiconductor Manufacturing Conference.
387–392.

BIRCHER, W. AND JOHN, L. 2012. Complete system power estimation using processor performance events. IEEE
Transactions on Computers 61, 4, 563–577.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: a framework for architectural-level power analysis
and optimizations. In ISCA. 83–94.

CARROLL, A. AND HEISER, G. 2010. An analysis of power consumption in a smartphone. In USENIX Annual
Technical Conference. 21–21.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



34:26 Q. Liu et al.

CHUNG, Y.-F., LIN, C.-Y., AND KING, C.-T. 2011. Aneprof: Energy profiling for android java virtual machine and
applications. In ICPADS. 372–379.

DONALD, J. AND MARTONOSI, M. 2006. Techniques for multicore thermal management: Classification and new
exploration. In ISCA. 78–88.

FEDOROVA, A., SMALL, C., NUSSBAUM, D., AND SELTZER, M. 2004. Chip multithreading systems need a new
operating system scheduler. In 11th ACM SIGOPS European Workshop.

FLOYD, M., ALLEN-WARE, M., RAJAMANI, K., BROCK, B., LEFURGY, C., DRAKE, A., PESANTEZ, L., GLOEKLER, T.,
TIERNO, J., BOSE, P., AND BUYUKTOSUNOGLU, A. 2011. Introducing the adaptive energy management features
of the power7 chip. Micro, IEEE 31, 2.

GONZALEZ, J., GIMENEZ, J., CASAS, M., MORETÓ, M., RAMÍREZ, A., LABARTA, J., AND VALERO, M. 2011. Simulating
whole supercomputer applications. Micro, IEEE 31, 3, 32–45.

HAMILTON, J. 2009. Internet-scale service infrastructure efficiency. In ISCA. 232–232.
HOWARD, D., GORBATOV, E., HANEBUTTE, U., KHANNA, R., AND LE, C. 2010. Rapl: memory power estimation and

capping. In ISLPED. 189–194.
HUANG, W., LEFURGY, C., KUK, W., BUYUKTOSUNOGLU, A., FLOYD, M., RAJAMANI, K., ALLEN-WARE, M., AND

BROCK, B. 2012. Accurate fine-grained processor power proxies. In 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’12). 224–234.

JIMENEZ, V., GIOIOSA, R., CAZORLA, F., VALERO, M., KURSUN, E., ISCI, C., BUYUKTOSUNOGLU, A., AND BOSE, P. 2011.
Energy-aware accounting and billing in large-scale computing facilities. Micro, IEEE 31, 3, 60–71.

KALLA, R., SINHAROY, B., STARKE, W., AND FLOYD, M. 2010. Power7: Ibm’s next-generation server processor.
Micro, IEEE 30, 2, 7–15.

KANSAL, A., ZHAO, F., LIU, J., KOTHARI, N., AND BHATTACHARYA, A. 2010. Virtual machine power metering and
provisioning. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC). 39–50.

KOOMEY, J. 2011. Growth in data center electricity use 2005 to 2010. Analytics Press.
KUMAR, R., ZYUBAN, V., AND TULLSEN, D. 2005. Interconnections in multi-core architectures: Understanding

mechanisms, overheads and scaling. In ISCA. 408–419.
LIU, Q., JIMENEZ, V., MORETO, M., ABELLA, J., CAZORLA, F., AND VALERO, M. 2013. Per-task energy account-

ing in computing systems. IEEE Computer Architecture Letters (to appear). http://people.ac.upc.edu/
jabella/camerareadyIEEECAL.pdf.

MCCULLOUGH, J., AGARWAL, Y., CHANDRASHEKAR, J., KUPPUSWAMY, S., SNOEREN, A., AND GUPTA, R. 2011. Evaluating
the effectiveness of model-based power characterization. In USENIX Annual Technical Conference. 12–
12.

MICHALAKES, J., DUDHIA, J., GILL, D., HENDERSON, T., KLEMP, J., SKAMAROCK, W., AND WANG, W. The weather
research and forecast model: software architecture and performance. In 11th Workshop on the Use of
High Performance Computing in Meteorology, Reading.

MORETO, M., CAZORLA, F., RAMIREZ, A., AND VALERO, M. 2008. Mlp-aware dynamic cache partitioning. In HiPEAC.
MURALIMANOHAR, N. AND BALASUBRAMONIAN, R. 2009. Cacti 6.0: A tool to understand large caches. HP Tech

Report HPL-2009-85.
NAFFZIGER, S., STACKHOUSE, B., GRUTKOWSKI, T., JOSEPHSON, D., DESAI, J., ALON, E., AND HOROWITZ, M. 2005.

The implementation of a 2-core multi-threaded itanium family processor. IEEE Journal of Solid-State
Circuits, 182–183.

NAWATHE, U., HASSAN, M., WARRINER, L., YEN, K., GREENHILL, D., KUMAR, A., AND PARK, H. 2008. Implementation
of an 8-core, 64-thread, power-efficient sparc server on a chip. IEEE Journal of Solid-State Circuits, 43,
1, 6–20.

NOKIA. 2012. Energy profiler.
PATHAK, A., HU, C., ZHANG, M., BAHL, P., AND WANG, W.-M. 2011. Fine-grained power modeling for smartphones

using system call tracing. In EuroSys. 153–168.
RAGHAVENDRA, R., RANGANATHAN, P., TALWAR, V., WANG, Z., AND ZHU, X. 2008. No “power” struggles: coordinated

multi-level power management for the data center. ASPLOS, 48–59.
SALMINEN, E., KANGAS, T., LAHTINEN, V., RIIHIMÄKI, J., KUUSILINNA, K., AND HÄMÄLÄINEN, T. 2007. Benchmarking

mesh and hierarchical bus networks in system-on-chip context. J. Syst. Archit. 53, 8.
SHEN, K., SHRIRAMAN, A., DWARKADAS, S., ZHANG, X., AND CHEN, Z. 2013. Power containers: an os facility for

fine-grained power and energy management on multicore servers. In ASPLOS.
SHERWOOD, T., PERELMAN, E., AND CALDER, B. 2001. Basic block distribution analysis to find periodic behavior

and simulation points in applications. 3–14.
SINGHAL, R. 2008. Inside intel next generation nehalem microarchitecture. In Intel Developer Forum.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.



Hardware Support for Accurate Per-Task Energy Metering in Multicore Systems 34:27

TULLSEN, D., EGGERS, S., AND LEVY, H. 1998. Simultaneous multithreading: maximizing on-chip parallelism.
In ISCA. 533–544.

UDIPI, A., MURALIMANOHAR, N., AND BALASUBRAMONIAN, R. 2010. Towards scalable, energy-efficient, bus-based
on-chip networks. In HPCA.

WESTE, N. AND ESHRAGHIAN, K. 1988. Principles of CMOS VLSI Design. A Systems Perspective. Addison-Wesley.

Received June 2013; revised September 2013; accepted October 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 34, Publication date: December 2013.


