Our approach performs software randomisation statically. In this paper we propose a new approach to software randomisation since it introduces indirections through pointers in off-the-shelf (COTS) processor designs. Unfortunately, software randomisation challenges functional verification needed for certification since it introduces indirections through pointers in the code. In this paper we propose a new approach to software randomisation which allows to contain its functional verification costs. Our approach performs software randomisation statically, as opposed to current dynamic approaches. We carefully review the requirements of the new approach and prove its feasibility.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-time and Embedded Systems; C.4 [Performance of Systems]: Performance attributes

General Terms
Design, Performance, Standardization

Keywords
Real-time, WCET, Certification

1. INTRODUCTION

In the automotive market, the number and complexity of functions (e.g. steer-by-wire, control for combustion engines, automatic emergency-braking triggered by collision avoidance systems, etc.) has steadily increased during the last years [6]. Increasingly complex hardware (i.e. cache hierarchies, multi-cores, etc.) is used to deliver the performance required by those complex functions. The use of more complex hardware (and software), however, challenges the application of conventional timing analysis techniques. Static timing analysis (STA) (1) has been shown to have scalability issues for industrial-size programs [16]; and (2) STA is highly sensitive to the lack of information about hardware and software details (e.g., the addresses of data accesses) resulting in a rapid increase of worst-case execution time (WCET) estimates. Meanwhile, measurement-based timing analysis (MBTA) relies having the ability to take detailed measurements of the system and being able to test the system adequately. There are many forms of MBTA including end-to-end testing and RapiTime analysis [20]. For end-to-end testing the code is simply measured end to end, there is often a lack of confidence in the testing to exercise the worst case path, so a safety margin may be added on top of the longest execution time observed. However, the soundness of such approach is hard—if at all possible—to prove, especially on top of processors deploying caches in which abrupt execution time variations can appear [17].

Probabilistic timing analysis (PTA) [4, 9, 5, 7] addresses some of the issues of STA and MBTA. PTA yields probabilistic WCET or pWCET estimates, which stand for time bounds with an associated exceedance probability (e.g., 10^{-15} per run). The measurement-based variant of PTA, MBPTA [7], which is the focus of our paper, has been proven to successfully obtain trustworthy and tight pWCET estimates even for industrial-size applications [21].

MBPTA poses some requirements on the hardware/software platform ensuring that the execution times observed from the execution of a program in the platform have some probabilistic properties. In particular, the execution times of end-to-end runs of the program under analysis must be modellable with independent and identically distributed (i.i.d.) random variables. This has been proven feasible, either by deploying new hardware designs that introduce randomisation in the timing behaviour of some components, like the cache [12]; or by deploying software randomisation [13], which can provide the required properties on top of some commercial off-the-shelf (COTS) processor designs. Software randomisation relies on placing memory objects (code and data) in random memory locations so that their placement in cache becomes also random despite the deterministic nature of conventional cache memories, which typically implement modulo placement and least recently used (LRU) replacement. This is achieved by randomly placing memory objects at program start time and/or when they are created dynamically, and accessing them through tables to deal with indirections. Unfortunately, the use of indirection tables in dynamic randomisation has been shown to challenge functional verification of programs needed for certification against safety standards like ISO26262 for automotive [11].

In this paper we propose a new approach to software randomisation in which randomisation is performed statically. While dynamic software randomisation (DSR) relies on including some randomisation code in the program executable (binary) so that, every time the program is invoked, memory objects are randomly placed, static software randomisation (SSR) relies on generating several binaries for the same program. In each binary memory objects are shifted appropriately to produce the same effect as if those objects are placed at random, yet statically determined, locations at runtime. By using SSR, modifications to the binary introduce neither indirections nor extra pointers. As a consequence, functional verification remains no
more complex than without software randomisation, requiring a qualified compiler that generates the SSR binaries. Analogously to DSR, SSR allows computing the probability that a given arrangement of objects in memory leads to a timing violation.

2. BACKGROUND

2.1 Probabilistic Timing Analysis (PTA)

PTA [4, 9, 5, 7] provides WCET estimates with an associated probability of occurrence, called probabilistic WCET (pWCET) estimates, which can be exceeded with a given probability, thus leading to a timing failure. Similar to the behaviour of hardware, which may fail with a given probability, PTA extends the notion of probability of failure to timing correctness. PTA can obtain pWCET estimates for arbitrarily low probabilities. For instance, the pWCET value associated to an exceedance probability of 10^{-20} per hour of operation may be chosen. This is large below the probability of random hardware failures, which must be proven to be below 10^{-7} per hour for the highest integrity level in ISO26262 (ASIL-D).

In this paper we focus on MBPTA as it is close to industrial practice to compute WCET estimates, where measurement-based approaches are common practice. MBPTA derives pWCET estimates for a program based on a collection of end-to-end observed execution times on a time-randomised architecture for which an execution time profile (ETP) can be derived for each instruction. MBPTA applies Extreme Value Theory (EVT) [14], a well-known statistical method, that based on the complementary cumulative distribution function (1-CDF) provides the probability that the execution time of a given program run exceeds a given pWCET estimate. The underlying principle of MBPTA is shown in Figure 1 in which the dotted line is tail distribution of the observed execution times and the continuous line represents the upper-bound provided by MBPTA.

In order to apply MBPTA it is required that the execution times collected from a program have a probabilistic behaviour such that it can be modelled with random variables, in particular with i.i.d. random variables. Under PTA the probabilistic timing behaviour of an instruction can be represented with an Execution Time Profile (ETP). An ETP describes the discrete probability distribution function of execution times, that is, the different execution times of the instruction and their corresponding probabilities. Having one ETP for each dynamic instruction allows the required i.i.d properties to emerge at the level of end-to-end measurement runs [2].

Figure 1: Example of 1−CDF and MBPTA projection.

Two random variables are: (a) independent if they describe two events such that the occurrence of one event does not have any impact on the occurrence of the other [10]; (b) identically distributed if they have the same probability distribution [10].

Figure 2: Relocation table is placed adjacent to the end of functions f_a and f_b into the main memory.

2.2 Dynamic Software Randomisation (DSR)

DSR relies on placing the code of functions and their stack frames, as well as global and static variables in random memory locations on each invocation.

Code randomisation (DSR-code): The randomisation of functions is performed by relocating each function's code into a random memory location at program startup time. A Relocation Table (RT) is placed at the end of each new relocated function to identify the addresses of all globals and functions accessed by the relocated function (see Figure 2). Stabilizer’s [8] compiler transformation rewrites all accesses to globals and other functions to indirect accesses through the RT. Figure 2 shows an example of two functions f_a and f_b with the latter calling the former (dotted line). The Figure also shows the layout of the functions once relocated. Function relocation is carried out in two phases:

- **Initialisation-Relocation.** At program startup, the Stabilizer runtime library allocates, for each function and in a random location, a sufficiently large block of memory from the DieHard [3] allocator and copies its code to this location. The runtime then generates a RT adjacent to the new function location, with all entries pointing to the original locations of any called functions and globals.

- **Redirection.** Then, Stabilizer overwrites the first instruction of the original function location with a static jump to the new location. This forwards all future calls to the random function location.

Stack Randomisation (DSR-stack): Stabilizer randomises the stack by making it non-contiguous. Stabilizer allocates a block of memory for every `<function, nesting level>` pair, with the allocation being done at function call time. Hence, if under the main function we have the sequence of calls $f_a(); f_b();$ on the first call to $f_a()$ Stabilizer allocates a block, which is not deallocated and reused for the second call to $f_b()$. If a function is called nestedly (e.g., $f_a()$ calls $f_b()$), Stabilizer allocates a new block of memory for every recursion level.

Every function has a depth counter and frame table that maps the depth to the corresponding stack frame (see Figure 3). The depth counter is incremented at the start of the function and decremented just before returning. On every call, the function loads its stack frame address from the frame table. If the frame address is null, Stabilizer runtime allocates a new frame.

Global/static Variables Randomisation (DSR-globals): Although not described in [13], globals location can be randomised analogously to function code at program startup and access to globals is then performed through indirections and pointers.

1We refer to global and static variables as *globals* for the sake of convenience.
3. STATISTICAL SOFTWARE RANDOMISATION

This section introduces how DSR challenges functional verification, and how this problem is addressed by our SSR techniques. We also review the implications of performing SSR.

3.1 Functional Verification of Software

Programs implementing safety-related functions need to meet ISO26262 standard [11] requirements in the automotive domain. Rigor is needed to meet standard requirements, and thus, a number of software design principles are listed in those standards to facilitate a successful software functional verification. Among those principles, in the ISO26262 we can find the following ones: (i) a limited use of pointers, (ii) recommendations against the use of dynamic objects, and (iii) no hidden data flow or control flow. This is particularly true for the highest safety levels (e.g. ASIL-C and ASIL-D).

DSR challenges functional verification of software in different ways. First, indirects for functions, stack frames and global/static variables occur through pointers. Second, functions (code), globals and stack frames use dynamic objects allocated by the DieHard [3] allocator. And third, data and control flow occurs through pointers, thus making it non-obvious.

As a consequence, generating use cases for software testing is challenging as the analysis of boundary values and error guessing, as listed in ISO26262, is hard when pointers and dynamic objects are used. Furthermore, the fact that functions are copied dynamically in new memory locations, thus writing code in data memory segments for its later execution, makes programs have self-modifying code, which some architectures may not support as the memory management unit may preclude this.

3.2 Static Code Placement Randomisation (SSR-code)

Conventional DSR-code relies on placing functions (code) at random locations every time the program is run. For that purpose, functions are compacted in the binary (no empty space between functions) and they are copied to the desired random locations when the program is run. Such an approach increases the memory space needed in the data segments at runtime to copy the code, but the size of the binary is increased negligibly to include the function copy code and indirect function calls.

In the case of our new SSR-code, random locations for functions are determined statically at compile time and such locations are already reflected in the function layout in the binary. This could be done by simply introducing some random shift (padding) between functions; however, this would increase binary size inordinately. In order to achieve the same effect efficiently, a number of steps must be taken to place functions randomly while minimising the size of the binary. Those steps are described in the algorithm in Figure 4.

We assume a cache deploying modulo placement as it is one of the most common placement functions. Given a cache of CS bytes with W ways, the size of a way is given by $WS = \frac{CS}{W}$. Given a function whose initial (instruction) address is $@A$, its first instruction will be placed in cache set $S = \lfloor A/WS \rfloor$, where LS is the line size in bytes. Note that, if we shift the initial address by WS, $@A + WS$, the first instruction will still be placed in S. Further, no assumption is made regarding the cache line alignment of instructions. Their original alignment with respect to the cache line is preserved when introducing a random shift if its size is a multiple of the cache line size.

Given the function list (F), we traverse it computing a random offset (or padding) for each function that determines its alignment w.r.t. the beginning of the cache way (lines 5-8). This padding (pad in the figure) is a multiple of the cache line size. F_{place} is a tuple containing the function, its size and the padding assigned to that function.

Once each function has its own padding (offset), any given function k_0 can be described as a contiguous memory area whose first instruction is mapped to set S_{fnst}^{init} and whose last instruction is mapped to set S_{last}^{init}. The algorithm then looks for the function k_0 whose S_{fnst}^{init} is the closest to 0 (or even 0). Once this function is placed in the binary, the algorithm looks for a function, from the list of not-yet-allocated functions, k_1, whose initial set is as close as possible to the set in which the last instruction of k_0 was assigned (lines 13-19). That is, the algorithm reduces the wasted space between S_{fnst}^{init} and S_{last}^{init} (lines 15-18). Note that the problem of minimising the total padding in-between functions is an NP-complete problem. In the algorithm, once each function has its own offset with respect to the first set of a cache way, we initialise the next alignment available (line 9) that can be used to place a function and the binary (line 10). Then, we traverse the set of functions, which includes their respective sizes and paddings (line 11). We initialise the minimum padding found to the largest value possible in line 12 (the size of a cache way). For each function in the

Figure 3: Randomisation of stack frames of functions f_a and f_b into the main memory.

Figure 4: Algorithm to randomly place functions in the binary.
is a greedy algorithm whose cost is until all functions are placed and the layout of all functions in the function placed from the set (line 22). This process repeats the corresponding padding (line 20), update the alignment de-
candidate found, we append such function to the binary adding (line 17). Once all functions have been examined and the best candidate found, we append such function to the binary adding the corresponding padding (line 20), update the alignment de-
sired for the next function to be placed (line 21) and remove the function placed from the set (line 22). This process repeats until all functions are placed and the layout of all functions in
the binary is obtained. The algorithm we propose for SSR-code is a greedy algorithm whose cost is \(O(N^2) \) w.r.t. the number of functions.

Once the functions are conveniently arranged in the binary, their initial addresses are fully known and can be used for calling them, as in a non-randomised program. Therefore, indi-
ctions needed for DSR-code are no longer needed. Moreover, since functions do not have to be written into the data mem-
ory space, as it is the case for DSR-code, which relies on self-
modifying code, memory protection is not challenged. Instead, instructions are fetched only from the code segment.

3.4 Static Global/Static Variable Randomisation (SSR-globals)

As indicated before, the case of globals is analogous to that of functions. Therefore, the algorithm in Figure 4 can also be used to randomise the location of globals. If globals are placed in different segments (i.e., `.data` and `.text` segments), then the algorithm must be applied individually to each segment. Still, the complexity of the problem is the same as for code since objects characteristics are fully known at compile time and hence, their location in the binary can be randomised analogously.

4. DEPLOYING DSR AND SSR

In this section we study the impact of deploying DSR and SSR in an automotive context which requires understanding the pWCET estimates obtained with MBPTA. Figure 5 shows the pWCET obtained for a representative program [21]. The X-axis shows time, with the scale not starting at 0, and the Y-axis probabilities in logarithmic scale. The function represents the pWCET estimate for the program. We observe that the pWCET function has a steep gradient. This means that the increase in pWCET experienced when decreasing the cutoff exceedance probability is small. For instance, the increase in pWCET from \(10^{-12} \) to \(10^{-16} \) is less than 1%.

4.1 DSR

With DSR, code and data placement are randomised across executions of the binary of a program, so that the exceedance probabilities of the pWCET estimates obtained for that program apply at the end-to-end run granularity. For instance, an exceedance probability of \(10^{-16} \) implies that an execution of the program can exceed the corresponding pWCET estimate with at most that probability for that execution instance alone. In order not to exceed a timing failure rate per hour (e.g., \(10^{-12} \)), if the program is executed, for instance \(10^6 \) times per hour, the system designer should choose as pWCET estimate the value at exceedance threshold \(10^{-12} \), because it is guaranteed probabilis-
tically that the accumulated timing failure rate of all instances of execution of the program in one hour is below \(10^{-16} \).

4.2 SSR

With SSR, code and data placement are randomised across images (binaries). Thus, i.i.d. properties are attained at image level rather than at end-to-end run granularity. Thus, timing failures apply at the granularity of binary instead of at end-to-end run granularity. In order to derive pWCET estimates with MBPTA, during the analysis phase, SSR deploys an automated approach in which \(N \) experiments are run, each with a different binary. The collected execution time from each run is fed to MBPTA to derive a pWCET estimate. Note that \(N \) is in the order of hundreds as shown in previous studies [7, 21].

For the system realisation (as opposed to analysis) there are two different approaches possible for SSR: (i) deploying a different binary in each system or (ii) deploying one of such binaries in all systems.

SSR with different binaries per system unit: In this approach the probability of timing failure of the program per system unit deployed is independent across units. If the pWCET of the program is not to be exceeded with a probability higher than \(10^{-22} \) and \(10^6 \) units are delivered, there is a probability of \(10^{-16} \) of exactly one system in which that program binary experiences timing failures and \(10^{-100} \) that it would happen in two different units. The downside of this approach is that it imposes a large overhead at deployment and system realisation.

SSR with single binary per system unit: In this approach the probability of timing failure is derived per system unit deployed. If the pWCET of the program is not to be exceeded with a probability higher than \(10^{-16} \), then it is guaranteed that at most one system in which that program binary experiences timing failure will be deployed in a unit. This implies that the probability of timing failures per system unit deployed is less than \(10^{-16} \), and that it is guaranteed probabilistically that the accumulated timing failure rate of all instances of execution of the program in one hour is below \(10^{-16} \).

To appreciate how small the \(10^{-16} \) cutoff probability is, con-
sider that Extinction Level Events (ELE), such as an asteroid hitting the Earth, are estimated to happen about once every 100 million years, hence at an arrival rate of \(10^{-16} \) per second, or \(10^{-12} \) per hour.

implies each unit having a different binary, which may not be acceptable if each individual unit is not fully tested.

SSR with the same binary: In this approach a single binary is generated with SSR and deployed in all systems. Then, if the binary exceeds the pWCET, it may do so in all units. However, this can be made to occur with negligible probability, in the same order of probability of an Extinction Level Event (ELE) to occur. Hence, if for instance, the pWCET is not to be exceeded with a probability higher than \(10^{-16}\) it is much more likely to experience an ELE than a timing failure.

5. EVALUATION

In this section we evaluate the overheads introduced by SSR. In order to place objects into random memory locations we consider Stabilizer, an existing compiler transformation and runtime system that enables random placement of functions, stack frames, heap objects, and globals for C and C++ programs [8].

The Stabilizer compiler pass has been developed within the LLVM compiler [1]. Each source code file is first compiled to LLVM’s internal representation. The resulting byte-code files are then processed with LLVM’s optimisation tool running the Stabilizer compiler pass. The optimised byte-code is then compiled to the target machine’s object code (PowerPC in our case). Since SSR is performed statically, there is no need to link any runtime library as it is the case for SSR. Finally, performance overheads have been obtained on a cycle-accurate execution-driven simulator based on the SoClib simulation framework [18] modelling a 4-stage pipeline processor with a memory hierarchy composed of first level separated instruction and data caches (1 cycle hit, 100 cycles miss), and main memory. Both instruction and data caches are 8KB 8-way set-associative with 32B lines. Both caches implement modulo placement and LRU replacement policies. The data cache implements a write-through, no-allocate write policy.

5.1 Memory Overheads

5.1.1 SSR-code and SSR-globals

SSR-code and SSR-globals are the main source of memory overheads when applying SSR. As shown in Section 3.2, some space is left between functions (and also between globals) in the binary so that their placement in cache is random. Next we analyse the overheads incurred when applying SSR-code to an industrial-size (case-study) application [21]. This application consists of around 5,000 functions whose sizes range between few bytes and 300KB. The total size of those functions is 4.7MB if they are enforced to be aligned with cache line boundaries assuming a cache line size of 32B. To analyse the sensitivity of SSR-code to cache way size we consider cache way sizes of 1KB, 2KB, 4KB and 8KB. Table 1 reports the average size in bytes of the code segment obtained for each way size for 1,000 different static software randomisations of the application together with the relative size increase w.r.t. the original code segment size. Maximum values are relatively close to the average , thus proving the stability of our approach. Also, as the way size increases, inefficiency also increases because the average size of the padding between different functions in the binary also grows.

The same analysis can be applied to globals as for functions in the industrial application. In this case the application consists of around 70,000 globals whose sizes range between few bytes and 24KB. Those globals are all in the .data segment, as it

5As binaries are randomly generated, it can be the case that different units get identical binaries, although this is highly unlikely to occur. Hence, if for instance, the pWCET is not to exceed a probability higher than \(10^{-16}\) it is much more likely to experience an ELE than a timing failure.

6We have corroborated that the characteristics of this avionics application reasonably resemble some real automotive applications in terms of function count and function size.

7The number of atoms in the Universe is estimated to be \(10^{80}\).

8The maximum stack depth refers only to the user code stack, excluding system stack which is not modified by our method.

is initialised to zero values. Uninitialised segments such as the .data one are not recommended for safety-critical applications.

The total size of those globals is 2.3MB if they are enforced to be aligned with cache line boundaries assuming a cache line size of 32B and only 640KB otherwise. In order to reduce such inefficiency we have packed globals so that they fill full cache lines and therefore, they can be kept cache line aligned. This leads to 18,000 objects, but most of them fill just one cache line. Small objects are prone to leave many gaps in between in the binary that cannot be filled. In particular, for a 1KB way size we observe a 60% data segment increase with 32B objects. Thus, we have packed globals into larger objects (1KB each) whenever possible for a total of 590 objects by simply packing the largest objects that do not exceed the cache line size. This still leads to around \(32^{590} \approx 10^{600}\) different potential object placements for a 1KB way size, so the degree of randomness attained is still huge. Note that the degree of randomness has been proven not to affect the correctness of the approach but the value of the pWCET estimates if few different object placements can be obtained, which is not our case at all [13]. Note that by packing globals into sizes not exceeding the cache way size, no conflict can occur across those globals and such behaviour holds both at analysis time and at deployment. Results are shown in Table 1. Overheads are similar to those for SSR-code.

Table 1: Binary size overheads for the case study.

<table>
<thead>
<tr>
<th>Way size</th>
<th>1KB</th>
<th>2KB</th>
<th>4KB</th>
<th>8KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>4,266,386</td>
<td>4,923,387</td>
<td>6,040,104</td>
<td>6,288,844</td>
</tr>
<tr>
<td>% increase</td>
<td>2.8%</td>
<td>4.0%</td>
<td>6.5%</td>
<td>11.7%</td>
</tr>
<tr>
<td>Data</td>
<td>674,145</td>
<td>681,159</td>
<td>734,698</td>
<td>815,665</td>
</tr>
<tr>
<td>% increase</td>
<td>4.1%</td>
<td>7.2%</td>
<td>13.6%</td>
<td>26.1%</td>
</tr>
<tr>
<td>Code+data</td>
<td>5,539,531</td>
<td>5,614,546</td>
<td>5,774,713</td>
<td>6,104,608</td>
</tr>
<tr>
<td>% increase</td>
<td>2.9%</td>
<td>4.4%</td>
<td>7.3%</td>
<td>13.4%</td>
</tr>
</tbody>
</table>

Total results for the binary, including code and data segments are also reported in Table 1. As shown, binaries are expected to grow little due to SSR, with cache way sizes in this range.

Sensitivity Analysis: We have also performed a sensitivity study considering random function sizes between 128B and 2048B varying the number of functions between 10 and 1,000. Results are shown in Figure 6. As for the case study, inefficiency grows for larger cache ways. Furthermore, we also observe that the larger the number of functions, the lower the relative overhead since it is easier to find functions to be placed with little padding. In particular if cache way size is 1KB the binary size overhead decreases from 19.2% (10 functions only) down to 2.0% (1,000 functions). Conversely, large cache ways are particularly harmful when few functions are placed since large padding cannot be avoided in-between those functions. For instance, for an 8KB way size the binary size is in the range of 2.5 to 3 times the original one if only 10 functions are placed. However, as the number of functions increases such overhead decreases. Finally, note that this sensitivity analysis for functions (Figure 6) is also valid for globals as they are analogous problems. Thus, the larger the number of globals or the larger their size, the lower the relative overhead due to SSR.

5.1.2 SSR-stack

Regarding SSR-stack, it is not stored in the binary. Instead, when functions are called some space may be wasted in the stack due to stack frame padding. As for functions and globals, the largest padding must be smaller than the cache way size. Thus, the overhead is incurred dynamically when functions are called and it can be upper-bounded by the maximum function call depth in the program multiplied by the cache way size. Since programs implementing safety-critical functions
Software randomisation has been used in the context of safety for unsafe languages. In [17], E. Mezzetti et al. describe a cache design for probabilistically analysable real-time systems. In [18], L. Kosmidis et al. present a design for probabilistically analysable real-time systems. In [19], Z. Stephenson et al. describe a system for supporting industrial use of probabilistic timing analysis for multi-path programs. In [20], F. Mezzetti et al. present a study of the industrial fitness of probabilistic timing analysis. In [21], F. Wartel et al. present a work on measurement-based probabilistic timing analysis for Windows systems. In [22], The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2012-34557, the HiPEAC Network of Excellence and the EU COST Action IC1202: Timing Analysis On Code-Level (TACLe). Leonidas Kosmidis is funded by the Spanish Ministry of Education under the FPU grant AP2010-4208.

8. REFERENCES