
A proposal for task parallelism in OpenMP

Eduard Ayguadé1, Nawal Copty2, Alejandro Duran1, Jay Hoeflinger3, Yuan
Lin2, Federico Massaioli4, Ernesto Su3, Priya Unnikrishnan5, Guansong

Zhang5

1 BSC-UPC
2 Sun Microsystems

3 Intel
4 CASPUR

5 IBM

Abstract. This paper presents a novel proposal to define task paral-
lelism in OpenMP. Task parallelism has been lacking in the OpenMP
language for a number of years already. As we show, this makes cer-
tain kinds of applications difficult to parallelize, inefficient or both. A
subcommittee of the OpenMP language committee, with representatives
from a number of organizations, prepared this proposal to give OpenMP
a way to handle unstructured parallelism. While defining the proposal we
had three design goals: simplicity of use, simplicity of specification and
consistency with the rest of OpenMP. Unfortunately, these goals were in
conflict many times during our discussions. The paper describes the pro-
posal, some of the problems we faced, the different alternatives, and the
rationale for our choices. We show how to use the proposal to parallelize
some of the classical examples of task parallelism, like pointer chasing
and recursive functions.

1 Introduction

OpenMP grew out of the need to standardize the directive languages of several
vendors in the 1990s. It was structured around parallel loops and meant to handle
dense numerical applications. But, as the sophistication of parallel programmers
has grown and the complexity of their applications has increased, the need for a
less structured way to express parallelism with OpenMP has grown. Users now
need a way to simply identify units of independent work, leaving the decision
about scheduling them to the runtime system. This model is typically called
“tasking” and has been embodied in a number of projects, for example Cilk [1].

The demonstrated feasibility of previous OpenMP-based tasking extensions
(for example workqueueing [2] and dynamic sections [3]) combined with the
desire of users to standardize it, has caused one of the priorities of the OpenMP
3.0 effort to be defining a standardized tasking dialect. In September of 2005, the
tasking subcommittee of the OpenMP 3.0 language committee began meeting,
with a goal of defining this tasking dialect. Representatives from Intel, UPC,
IBM, Sun, CASPUR and PGI formed the core of the subcommittee.

This paper, written by some of the tasking subcommittee members, is a
description of the resulting tasking proposal, including our motivations, our goals
for the effort, the design principles we attempted to follow, the tough decisions
we had to make and our reasons for them. We will also present examples to
illustrate how tasks are written and used under this proposal.

2 Motivation and related work

OpenMP “is somewhat tailored for large array-based applications”[4]. This is
evident in the limitations of the two principal mechanisms to distribute work
among threads. In the loop construct, the number of iterations must be deter-
mined on entry to the loop and cannot be changed during its execution. In the
sections construct, the sections are statically defined at compile time.

A common operation like a dynamic linked list traversal is thus difficult
to parallelize in OpenMP. A possible approach, namely the transformation at
run time of the list to an array, as shown in fig. 1, pays the overheads of the
array construction, which is not easy to parallelize. Another approach, using
the single nowait construct as shown in fig. 2, can be used. While elegant,
it’s non-intuitive, and inefficient because of the usually high cost of the single

construct[5].

1 p = l i s t h e ad ;
2 num elements=0;
3 while (p) {
4 l i s t i t e m [num elements++]=p ;
5 p=next (p) ;
6 }
7 #pragma omp paral lel for

8 for (int i =0; i<num elements ; i++)
9 proc e s s (l i s t i t e m [i]) ;

Fig. 1. Parallel pointer chasing with
the inspector-executor model

#pragma omp paral lel private (p)
{

p = l i s t h ea d ;
while (p) {

#pragma omp single nowait

proc e s s (p) ;
p = next (p) ;

}
}

Fig. 2. Parallel pointer chasing using
single nowait

Both techniques above lack generality and flexibility. Many applications (rang-
ing from document bases indexing to adaptive mesh refinement) have a lot of
potential concurrency, which is not regular in form, and varies with processed
data. Dynamic generation of different units of work, to be asynchronously exe-
cuted, allows one to express irregular parallelism, to the benefit of performance
and program structure. Nested parallelism could be used to this aim, but at the
price of significant performance impacts and increased synchronizations.

The present OpenMP standard also lacks the ability to specify structured
dependencies among different units of work. The ordered construct assumes a
sequential ordering of the activities. The other OpenMP synchronization con-
structs, like barrier, actually synchronize the whole team of threads, not work
units. This is a significant limitation on the coding of hierarchical algorithms

like those used in tree data structure traversal, multiblock grid solvers, adap-
tive mesh refinement[6], dense linear algebra [7–9] (to name a few). In principle,
nested parallelism could be used to address this issue, as in the example shown
in fig. 3. However, overheads in parallel region creation, risks of oversubscribing
system resources, difficulties in load balancing, different behaviors of different
implementations, make this approach impractical.

1 void t r a v e r s e (b ina ry t r e e ∗p) {
2 #pragma omp paral lel sections num threads (2)
3 {
4 #pragma omp section

5 i f (p−> l e f t) t r a v e r s e (p−> l e f t) ;
6 #pragma omp section

7 i f (p−>r i gh t) t r a v e r s e (p−>r i g h t) ;
8 }
9 proc e s s (p) ;

10 }

Fig. 3. Parallel depth-first tree traversal

The Cilk programming language[1] is an elegant, simple, and effective ex-
tension of C for multithreading, based on dynamic generation of tasks. It is
important and instructive, particularly because of the work-first principle and
the work-stealing technique adopted. However, it lacks most of the features that
make OpenMP very efficient in many computational problems.

The need to support irregular forms of parallelism in HPC is evident in fea-
tures being included in new programming languages, notably X10 [10] (activities
and futures), and Chapel [11] (the cobegin statement).

The Intel workqueueing model [2] was the first attempt to add dynamic task
generation to OpenMP. This proprietary extension allows hierarchical generation
of tasks by nesting of taskq constructs. Synchronization of descendant tasks is
controlled by means of implicit barriers at the end of taskq constructs. The
implementation exhibits some performance issues [5, 8].

The Nanos group at UPC proposed Dynamic Sections as an extension to
the standard sections construct to allow dynamic generation of tasks [3]. Di-
rect nesting of section blocks is allowed, but hierarchical synchronization of
tasks can only be attained by nesting of a parallel region. The Nanos group also
proposed the pred and succ constructs to specify precedence relations among
statically named sections in OpenMP [12]. These are issues that may be ex-
plored as part of our future work.

The point-to-point synchronization explored at EPCC [13] improves in per-
formance and flexibility with respect to OpenMP barrier. However, the syn-
chronization still involves threads, not units of work.

3 Task proposal

The current OpenMP specification (version 2.5) is based on threads. The execu-
tion model is based on the fork-join model of parallel execution where all threads
have access to a shared memory. Usually, threads share work units through the
use of worksharing constructs. Each work unit is bound to a specific thread for
its whole lifetime. The work units use the data environment of the thread they
are bound to.

Our proposal allows the programmer to specify deferrable units of work that
we call tasks. Tasks, unlike current work units, are not bound to a specific thread.
There is no a priori knowledge of which thread will execute a task. Task execution
may be deferred to a later time, and different parts of a task may be executed by
different threads. As well, tasks do not use the data environment of any thread
but have a data environment of their own.

3.1 Terminology

Task A structured block, executed once for each time the associated task con-
struct is encountered by a thread. The task has private memory associated
with it that stays persistent during a single execution. The code in one in-
stance of a task is executed sequentially.

Suspend/resume point A suspend point is a point in the execution of the
task where a thread may suspend its execution and run another task. Its
corresponding resume point is the point in the execution of the task that
immediately follows the suspend point in the logical code sequence. Thus,
the execution that is interrupted at a suspend point resumes at the matching
resume point.

Thread switching A property of the task that allows its execution to be sus-
pended by one thread and resumed by a different thread, across a suspend/re-
sume point. Thread switching is disabled by default.

3.2 The task construct

The C/C++ syntax6 is as follows:

#pragma omp task [clause[[,]clause] ...]

structured-block

The thread that encounters the task construct creates a task for the as-
sociated structured block, but its execution may be deferred until later. The
execution gives rise to a task region and may be done by any thread in the
current parallel team.

A task region may be nested inside another task region, but the inner one is
not considered part of the outer one. The task construct can also be specified

6 Fortran syntax is not shown in this paper because of space limitations

inside any other OpenMP construct or outside any explicit parallel construct.
A task is guaranteed to be complete before the next associated thread or task
barrier completes.

The optional clauses can be chose from:

– untied
– shared (variable-list)
– captureprivate (variable-list)
– private (variable-list)

The untied clause enables thread switching for this task. A task does not
inherit the effect of a untied clause from any outer task construct.

The remaining three clauses are related to data allocation and initialization
for a task. Variables listed in the clauses must exist in the enclosing scope, where
each is referred to as the original variable for the variable in the task.

References within a task to a variable listed in its shared clause refer to the
original variable. New storage is created for each captureprivate variable and
initialized to the original variable’s value. All references to the original variable
in the task are replaced by references to the new storage. Similarly, new storage
is created for private variables and all references to them in the task refer to
the new storage. However, private variables are not automatically initialized.

The default for all variables with implicitly-determined sharing attributes is
captureprivate.

3.3 Synchronization constructs

Two constructs (taskgroup and taskwait) are provided for synchronizing the
execution of tasks.

The C/C++ syntax for taskgroup and taskwait is as follows:

#pragma omp taskgroup

structured-block

#pragma omp taskwait

The taskgroup construct specifies that execution will not proceed beyond its
associated structured block until all direct descendant tasks generated within it
are complete. The taskwait construct specifies that execution will not proceed
beyond it until all direct descendant tasks generated within the current task, up
to that point, are complete.

There is no restriction on where a taskgroup construct or a taskwait con-
struct can be placed in an OpenMP program. Taskgroup constructs can be
nested.

3.4 Other constructs

When a thread encounters the taskyield construct, it is allowed to look for
another available task to execute. This directive becomes an explicit suspend/re-
sume point in the code. The syntax for C/C++ is:

#pragma omp taskyield

3.5 OpenMP modifications

The tasking model requires various modifications in the OpenMP 2.5 specifica-
tion. We list some of these below.

– Execution Model. In the 2.5 specification, there is no concept of the de-
ferral of work or of suspend or resume points. In our proposal, a task may
be suspended/resumed and execution of the task may be deferred until a
later time. Moreover, a task may be executed by different threads during its
lifetime, if thread switching is explicitly enabled.

– Memory Model. In the 2.5 specification, a variable can be shared among
threads or be private to a thread. In the tasking model, a variable can be
shared among tasks, or private to a task. The default data sharing attributes
for tasks differs from the defaults for parallel constructs.

– Threadprivate data and properties. Inside OpenMP 2.5 work units,
threadprivate variables and thread properties (e.g. thread id) can be used
safely. Within tasks, this may not be the case. If thread switching is enabled,
the executing thread may change across suspend or resume points, so thread
id and threadprivate storage may change.

– Thread Barrier. In our proposal, a task is guaranteed to be complete before
the associated thread or task barrier completes. This gives a thread barrier
extra semantics that did not exist in the 2.5 specification.

– Locks. In the 2.5 specification, locks are owned by threads. In our proposal,
locks are owned by tasks.

4 Design principles

Unlike the structured parallelism currently exploited using OpenMP, the tasking
model is capable of exploiting irregular parallelism in the presence of complicated
control structures. One of our primary goals was to design a model that is easy
for a novice OpenMP user to use and one that provides a smooth transition
for seasoned OpenMP programmers. We strived for the following as our main
design principles: simplicity of use, simplicity of specification and consistency

with the rest of OpenMP, all without losing the expressiveness of the model. In
this section, we outline some of the major decisions we faced and the rationale
for our choices, based on available options, their trade-offs and our design goals.

What form should the tasking construct(s) take?

Option 1 A new work-sharing construct pair : It seemed like a natural extension
of OpenMP to use a work-sharing construct analogous to sections to set up
the data environment for tasking and a task construct analogous to section

to define a task. Under this scheme, tasks would be bound to the work-
sharing construct. However, these constructs would inherit all the restrictions
applicable to work-sharing constructs, such as a restriction against nesting
them. Because of the dynamic nature of tasks, we felt that this would place

unnecessary restrictions on the applicability of tasks and interfere with the
basic goal of using tasks for irregular computations.

Option 2 One new OpenMP construct : The other option was to define a single
task construct which could be placed anywhere in the program and which
would cause a task to be generated each time a thread encounters it. Tasks
would not be bound to any specific OpenMP constructs. This makes tasking
a very powerful tool and opens up new parallel application areas, previously
unavailable to the user due to language limitations. Also, using a single
tasking construct significantly reduces the complexity of construct nesting
rules. The flexibility of this option seemed to make it the most easy to merge
into the rest of OpenMP, so this was our choice.

Should we allow thread switching and what form should it take?
Thread switching is a concept that is alien to traditional OpenMP. In OpenMP,
a thread always executes a unit of work in a work-share from start to finish. This
has encouraged people to use the thread number to identify a unit of work, and
to store temporary data in threadprivate storage. This has worked very well
for the kind of parallelism that can be exploited in regular control structures.
However, tasking is made for irregular parallelism. Tasks can take wildly differ-
ing amounts of execution time. It is very possible that the only thread eligible
to generate tasks might get stuck executing a very long task. If this happens,
the other threads in the team could be sitting idle, waiting for more tasks, and
starvation results. Thread switching would enable one of the waiting threads to
take over task-generation in a situation like this.

Thread switching provides greater flexibility and potentially higher perfor-
mance. It allows work-first execution of tasks, where a thread immediately exe-
cutes the encountered task and another thread continues where the first thread
left off. It has been shown that work-first execution can result in better cache
reuse [1]. However, switching to a new thread changes the thread number and
any threadprivate data being used, which could be surprising to an experienced
OpenMP programmer.

Balancing the benefits of thread switching against the drawbacks, it was
decided to allow thread switching in a limited and controlled manner. We decided
to disable thread switching by default. It is only allowed inside tasks using the
untied clause. Without the untied clause, the programmer can depend on the
thread number and threadprivate data in a task just as in other parts of
OpenMP.

Should the implementation guarantee that task references to stack
data are safe? A task is likely to have references to the data on the stack of
the routine where the task construct appears. Since the execution of a task is
not required to be finished until the next associated task barrier, it is possible
that a given task will not execute until after the stack of the routine where it
appears is already popped and the stack data over-written, destroying local data
listed as shared by the task.

The committee’s original decision was to require the implementation to guar-
antee stack safety by inserting task barriers where required. We soon realized
that there are circumstances where it is impossible to determine at compile time
exactly when execution will leave a given routine. This could be due to a complex
branching structure in the code, but worse would be the use of setjmp/longjmp,
C++ exceptions, or even vendor-specific routines that unwind the stack. When
you add to this the problem of the compiler understanding when a given pointer
dereference is referring to the stack (even through a pointer argument to the rou-
tine), you find that in a significant number of cases the implementation would
be forced to conservatively insert a task barrier immediately after many task
constructs, severely restricting the parallelism possible with tasks.

Our decision was to simply state that it is the user’s responsibility to insert
any needed task barriers to provide any needed stack safety.

What should be the default data-sharing attributes for variables in
tasks? Data-sharing attributes for variables can be pre-determined, implic-
itly determined or explicitly determined. Variables in a task that have pre-
determined sharing attributes are not allowed in clauses, and explicitly-determined
variables do not need defaults, by definition. However, the data-sharing at-
tributes for implicitly-determined variables require defaults.

The sharing attributes of a variable are strongly linked to the way in which it
is used. If a variable is shared among a thread team and a task must modify its
value, then the variable should be shared on the task construct and care must
be taken to make sure that fetches of the variable outside the task wait for the
value to be written. If the variable is read-only in the task, then the safest thing
would be to make the variable captureprivate, to make sure that it will not
be deallocated before it is used. Since we decided to not guarantee stack safety
for tasks, we faced a hard choice:

Option 1 make data primarily shared, analogous to using shared in the rest
of OpenMP. This choice is consistent with existing OpenMP. But, with this
default, the danger of data going out of scope is very high. This would put
a heavy burden on the user to ensure that all the data remains allocated
while it is used in the task. Debugging can be a nightmare for things that
are sometimes deallocated prematurely.

Option 2 make data primarily captureprivate. The biggest advantage of this
choice is that it minimizes the ”data-deallocation”’ problem. The user only
needs to worry about maintaining allocation of variables that are explic-
itly shared. The downside to using captureprivate as the default is that
Fortran parameters and C++ reference parameters will, by default, be cap-
tured by tasks. This could lead to errors when a task writes into reference
parameters.

Option 3 make some variables shared and some captureprivate. With this
choice, the rules could become very complicated, and with complicated rules
the chances for error increase. The most likely effect would be to force the

programmer to explicitly place all variables in some clause, as if there were
no defaults at all.

In the end, we decided to make all variables with implicitly-determined shar-
ing attributes default to captureprivate. While not perfect, this choice gives
programmers the most safety, while not being overly complex.

5 Examples of use

In this section, we revisit examples we used in section 2, and write those appli-
cations based on our task proposal.

5.1 Pointer chasing in parallel

Pointer chasing (or pointer following) can be described as a segment of code
working on a list of data items linked by pointers. When there is no dependence,
the process can be executed in parallel.

We already described in Section 2 a couple of non-efficient or non-intuitive
parallelization strategies for this kernel (fig. 1 and 2). In addition, both solutions
fail if the list itself needs to be updated dynamically during the execution. In
fact, with proper synchronization, the second solution may append more items
at the end of the link, while the first one will not work at all.

All these problems go away with the new task proposal. This simple kernel
could be parallelized as shown in fig. 4.

1 #pragma omp paral lel

2 {
3 #pragma omp single

4 {
5 p = l i s t h e ad ;
6 while (p) {
7 #pragma omp task

8 proc e s s (p)
9 p=next (p) ;

10 }
11 }
12 }

Fig. 4. Parallel pointer chasing us-
ing task

#pragma omp paral lel private (p)
{

#pragma omp for

for (int i =0; i< num l i s t s ; i++) {
p = l i s t h e a d s [i] ;
while (p) {

#pragma omp task

proc e s s (p)
p=next (p) ;

}
}

}

Fig. 5. Parallel pointer chasing on multiple
lists using task

The task construct gives more freedom for scheduling (see the next section
for more). It is also more straightforward to add a synchronization mechanism
to work on a dynamically updated list7

7 We will leave it as an exercise for readers to write the next function in the different
versions.

1 int f i b (int n) {
2 int x , y , sum ;
3 i f (n<2)
4 return n ;
5#pragma omp taskgroup

6 {
7#pragma omp task shared (x)
8 x=f i b (n−1);
9#pragma omp task shared (y)

10 y=f i b (n−2);
11 }
12 return x+y ;
13 }

Fig. 6. Fibonacci with recursive task

In fig. 4, the single construct ensures that only one thread will encounter
the task directive and start a task nest. It is also possible to use other OpenMP
constructs, such as sections and master, or even an if statement using thread
id, to achieve the same effect.

More interestingly, we may have multiple lists to be processed simultaneously
by the threads of the team, as in fig. 5. This results in better load balancing when
the number of lists does not match the number of threads, or when the lists have
very different lengths.

5.2 Recursive task

Another scenario of using the task directive is shown in fig. 6, inspired by one of
the examples in the Cilk project [1]. This code segment calculates the Fibonacci
number. If a call to this function is encountered by a single thread in a parallel
region, a nested task region will be spawned to carry out the computation in
parallel. The TASKGROUP construct defines a code region which the encountering
thread should wait for. Both i and j are on the stack of the parent function
that invokes the new tasks. Please refer to section 3.3 for the details. Notice that
although OpenMP constructs are combined with a recursive function, it is still
equivalent to its sequential counterpart.

Other applications falling into this category include: virus shell assembly,
graphics rendering, n-body simulation, heuristic search, dense and sparse matrix
computation, friction-stir welding simulation and artificial evolution.

We can also rewrite the example in fig. 3 as in fig. 7. In this figure, we use
task to avoid the nested parallel regions. Also, we can use a flag to make the
post order processing optional.

6 Future work

So far, we have presented a proposal to seamlessly integrate task parallelism into
the current OpenMP standard. The proposal covers the basic aspects of task
parallelism, but other areas are not covered by the current proposal and may

1 void t r a v e r s e (b ina ry t r e e ∗p , bool postorder) {
2 #pragma omp task

3 i f (p−> l e f t) t r a v e r s e (p−>l e f t , postorder) ;
4 #pragma omp task

5 i f (p−>r i gh t) t r a v e r s e (p−>r ight , postorder) ;
6 i f (postorder) {
7 #pragma omp taskwait

8 }
9 proc e s s (p) ;

10 }

Fig. 7. Parallel depth-first tree traversal

be subject of future work. One such possible extension is a reduction operation
performed by multiple tasks. Another is specification of dependencies between
tasks, or point-to-point synchronizations among tasks. These extensions may
be particularly important for dealing with applications that can be expressed
through a task graph or that use pipelines.

The task proposal allows a lot of freedom for the runtime library to schedule
tasks. Several simple strategies for scheduling tasks exist but it is not clear which
will be better for the different target applications as these strategies have been
developed in the context of recursive applications. Furthermore, more complex
scheduling strategies can be developed that take into account characteristics of
the application which can be found either at compile time or run time. Another
option would be developing language changes that allow the programmer to
have greater control of the scheduling of tasks so they can implement complex
schedules (e.g. shortest job time, round robin) [8].

7 Conclusions

We have presented the work of the tasking subcommittee: a proposal to integrate
task parallelism into the OpenMP specification. This allows programmers to
parallelize program structures like while loops and recursive functions more
easily and efficiently. We have shown that, in fact, these structures are easy to
parallelize with the new proposal.

The process of defining the proposal has not been without difficult decisions,
as we tried to achieve conflicting goals: simplicity of use, simplicity of spec-

ification and consistency with the rest of OpenMP. Our discussions identified
trade-offs between the goals, and our decisions reflected our best judgments of
the relative merits of each. We also described how some parts of the current
specification need to be changed to accommodate our proposal.

In the end, however, we feel that we have devised a balanced, flexible, and
very expressive dialect for expressing unstructured parallelism in OpenMP pro-
grams.

Acknowledgments

The authors would like to acknowledge the rest of participants in the tasking
subcommittee (Brian Bliss, Mark Bull, Eric Duncan, Roger Ferrer, Grant Haab,
Diana King, Kelvin Li, Xavier Martorell, Tim Mattson, Jeff Olivier, Paul Pe-
tersen, Sanjiv Shah, Raul Silvera, Xavier Teruel, Matthijs van Waveren and
Michael Wolfe) and the language committee members for their contributions to
this tasking proposal. The Nanos group at BSC-UPC is supported has been sup-
ported by the Ministry of Education of Spain under contract TIN2007-60625,
and the European Commission in the context of the SARC integrated project
#27648 (FP6).

References

1. Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. In PLDI ’98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and implementation,
pages 212–223, New York, NY, USA, 1998. ACM Press.

2. S. Shah, G. Haab, P. Petersen, and J. Throop. Flexible control structures for
parallellism in OpenMP. In 1st European Workshop on OpenMP, September 1999.

3. J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta.
Nanos Mercurium: A Research Compiler for OpenMP. In 6th European Workshop
on OpenMP (EWOMP ’04), pages 103–109, September 2004.

4. OpenMP Architecture Review Board. OpenMP Application Program Interface,
May 2005.

5. F. Massaioli, F. Castiglione, and M. Bernaschi. OpenMP parallelization of agent-
based models. Parallel Computing, 31(10-12):1066–1081, 2005.

6. R. Blikberg and T. Sørevik. Load balancing and OpenMP implementation of nested
parallelism. Parallel Computing, 31(10-12):984–998, 2005.

7. S. Salvini. Unlocking the Power of OpenMP. Invited lecture at 5th European
Workshop on OpenMP (EWOMP ’03), September 2003.

8. F. G. Van Zee, P. Bientinesi, T. M. Low, and R. A. van de Geijn. Scalable Paral-
lelization of FLAME Code via the Workqueuing Model. ACM Trans. Math. Soft.,
submitted, 2006.

9. J. Kurzak and J. Dongarra. Implementing Linear Algebra Routines on Multi-Core
Processors with Pipelining and a Look Ahead. LAPACK Working Note 178, Dept.
of Computer Science, University of Tennessee, September 2006.

10. The X10 Design Team. Report on the Experimental Language X10. Technical
report, IBM, February 2006.

11. D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cascade High Productiv-
ity Language. In 9th Int. Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS 2004), pages 52–60. IEEE Computer Society,
April 2004.

12. Marc Gonzalez, Eduard Ayguadé, Xavier Martorell, and J. Labarta. Exploiting
pipelined executions in OpenMP. In 32nd Annual International Conference on
Parallel Processing (ICPP’03), October 2003.

13. J. M. Bull and C. Ball. Point-to-Point Synchronisation on Shared Memory Ar-
chitectures. In 5th European Workshop on OpenMP (EWOMP ’03), September
2003.

