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INTRODUCTION 
 

 

 During the recent times, the idea of Internet world has seen a revolution 

about content distribution. Beginning from the delivery of simple text contents 

like e-mail or transferring of files through FTP, Internet has moved towards new 

evolved applications, such as social networks like Facebook, virtual worlds, on-

line games, blogs and video publishing and distribution systems. 

Also the typical user has changed his behavior and his needs: he has passed from 

playing a passive role into the network, just downloading or browsing multimedia 

contents, to becoming an active producer and publisher of multimedia content. 

A notable instance of this trend is the explosion of YouTube [1], the well known 

video streaming application that nowadays counts more than one million of video 

views per day. 

 In this dynamic environment, more and more peer-to-peer IPTV (Internet 

Protocol TeleVision) communities are growing. Usually, in this kind of networks 

there is one or more source hosts that provide a real-time video streaming to a 

multitude of recipients. Using an application with a so large number of involved 

nodes in a Client/Server architecture is unthinkable, because the server 

capabilities (memory, bandwidth, CPU) represents a scalability limit of the 

system. The development of IPTV is due to several factors: (i) the interest for the 

normal TV is constantly decreasing; (ii) by now the Internet network is considered 

like the main source of information for workers; (iii) users like the interaction 

with other users, so the idea of “community” is very diffused and appreciated [2]. 

The main topic of this thesis is analyzing the features of PPlive, a P2P 

live-streaming network, through the study of a quite big amount of traces captured 

during Michael Jackson funerals. Since this event has been very popular in 

network community (several tens of millions of people connected watching it), it 
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could be supposed that the obtained results should be significant and 

representative. 

With more details, the analyses aim to characterize the network traffic, 

distinguishing between TCP and UDP traffic, generated and received traffic by 

peers (it means download or upload traffic), data (video) traffic or control traffic 

and intra-domain and inter-domain traffic. Other experiments regarding the port 

utilization, the population of the source channel and the balance between 

download and upload traffic, have been executed . 

During this work, the attention has been pointed also on the presentation 

and explanation of CoreCast, a new network-layer protocol implemented for 

supporting and improving video-live streaming in p2p networks. CoreCast is build 

in top of the LISP, a protocol that implements the division between the location 

part and the identifier part of a IP address (Loc/ID split). So, in order to 

understand and check its performance, a comparison between intra-domain and 

inter-domain traffic between a CoreCast network and a “classical” p2p network 

has been made. It has been implemented using the information resulting from the 

analyzed traces, and also through the support of some analytical calculus. 

 The present work of thesis is structured as follows: in the first chapter the 

traditional delivery methods (i.e. unicasting, broadcasting and multicasting) are 

presented and compared; then, the peer-to-peer paradigm is introduced in the 

second chapter, in which some routing strategies in p2p environment can be 

found, too; the third chapter deals with the video delivery method in every 

transmission method described in chapters 1 and 2. LISP and CoreCast are 

presented and explained in the fourth chapter; afterwards, the work environment, 

the meaning and the structure of the analyses are showed in the fifth chapter; 

finally, the analyses and the results are showed and commented in the sixth 

chapter. All the conclusions are collected in a final proper section. 
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CHAPTER 1 

Traditional Transmission 

Methods 
 

 

Nowadays, networks world is in a constant change, because of the needs of 

the clients are in a constant evolution too. It is due to the technologic progress, 

that had allowed more resources to the computer machines (also to the domestic 

personal computers), that have started to ask for new services. 

The great majority of these new services are based on multimedia data, such as 

audio, video, or audio and video combined together and many more. Beyond, the 

requests of these kind of services and applications are many and many, so some 

new methods to support the delivery of multimedia contents are necessary. 

 There are various approaches to implement the multi-user deliveries of 

multimedia data and they are different under many aspects, such as bandwidth 

consumption, routing algorithms, problems connected to sending a lot of data at 

the same time on the same communication channel. 

Although in the recent time some new mechanisms have been implemented to 

better support the new clients’ needs, the traditional transmission methods are 

unicasting, broadcasting and multicasting. These three kind of deliveries present a 

lot of differences, different advantages and different problems too. 

By the way, using one of these methods in a “pure configuration” could not 

accomplish to satisfactory results. 
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The discussion starts from the simpler, the unicasting; it represents the 

most natural solution but also the most inefficient, because it keeps a lot of 

problems concerning the emission by the source of a lot of packets. 

This limit represents a problem of scalability, because the amount of traffic on the 

network depends on the number of the recipients of the message. This is due to 

the fact that, in distributing multimedia to a large set of users, the source has to 

send a copy of the message for each receiver. For this reason, the source can 

became a bottleneck. 

After the discussion about unicasting transmission, the chapter deals with 

multicast transmission and broadcast transmission too, two kinds of methods in 

which the problem of sending a lot of copies by source is avoided using a special 

address to reach more hosts. 

Since the source has to send just one packet, on one hand the problem of 

scalability disappears, on other hand problems of duplication and delivery of 

packet come. As it will be shown later, multicasting needs some particular routing 

algorithms to implement the multiple deliveries. 

 

 

1.1 Unicast transmission 
 

 There are various kinds of transmission in telecommunications world that 

depend on the principal aim of communication to be reached. 

Network designers are now facing with the defiance of supporting the reliability 

of a lot of types of data delivery to any user, above of multimedia and real-time 

contents. [3].  

Because of the requirement of supporting real-time data, the applications need to 

evolve from one-to-one communication to a one-to-many or better many-to-many 

communications. It’s necessary to make a distinction among the different types of 
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communication that can be found in a telecommunication network, in order to 

understand the advantages and the disadvantages of each of them. 

The first distinction is between Client/Server paradigm to Peer-to-Peer 

paradigm: 

• the former is the most classical type of communication. It’s used since the 

rising of internet network, and it is based on a subject who provides 

services (the server) to another subject that asks and uses these services 

(the client). This structure is very useful to control the traffic in the 

network as much as possible because, thanks to the servers it is possible to 

control everything that happens during communication. In others words, 

we have a centralized control system. 

But sometimes it’s not the best way to obtain good performance (about 

saving bandwidth, minimizing end-to-end delay, avoiding packet losses, 

etc…), because the QoS (Quality of Services) depends from server’s 

capabilities. 

Moreover control operations increase the necessary bandwidth to maintain 

the communications among the hosts [4]. 

• the latter is a new way to communicate in a telecommunication network 

and it based on just a type of subject: the peer. The peer can behave as a 

server, sharing contents or providing services, but it can behave also as a 

client, taking contents shared by others peers or using some services that 

others peers are offering to the network’s participants in that moment. 

Since it is a decentralized system, it’s very difficult to get the control of all 

network without centers that let know what’s happening in communication 

channels. Besides, the situation is more complicated because peers are free 

in joining or leaving the network in every moment, without giving some 

acknowledgments to the other hosts (these issues are discussed in detail in 

chapter 3). 

But this paradigm has also some advantages, first of all the independence 

between QoS provided by the network and hosts capabilities. It happens 
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because there are no servers, so the communication doesn’t depend from 

the capabilities of any particular machine. In this way it’s possible to 

reduce drastically the costs of powerful hardware necessary to the servers 

to control a huge amount of traffic with a lot of clients. 

In the meantime, the absence of centralized point of control makes the 

workload among peers better distributed, avoiding network’s collapses or 

possible creations of bottlenecks. 

 

The unicast communication is referred above all to Client-Server 

paradigm, as a matter of fact it consists of a one-to-one connection between a 

client and a server. The client asks a server a service, and the server answers only 

to it. 

There are two kinds of unicast: 

• single unicast, referred to a communication between two nodes. It consists 

of a single path transmission or a multi-path transmission with the same 

source and destination nodes (that assures more reliability but increases 

the amount of traffic on the network, because several copies of the 

message are sent by different paths); 

•  group unicast, referred to simultaneous transmissions between a single 

source node and several destination nodes (obviously it consists in an 

additive bandwidth cost). 

  

 In both modalities, every delivery regards only two subjects. For this 

reason, it’s very simple to control the only channel that has been created, to make 

possible the transmission of data between them. 

On one side there is an absolute simplicity, a great deal of control of the data 

traffic and of the Qos given to clients in every moment, besides a high level of 

security in communication [3]. On the other side there is a consistent cost 

concerning bandwidth utilization: a reserved channel for every client asking for a 
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service is necessary. This means that the server should be able to manage a 

consistent amount of traffic (fig 1.1). 

 

 
Fig. 1.1: Representation of flow of data in unicast transmissions between one server and 

more clients 

 

 It happens because unicast is based on TCP (Transmission Control 

Protocol) and UDP (User Datagram Protocol) delivery methods, that are both end-

to-end mechanisms [5]. As fig. 1.1 shows, it means that every time a client needs 

to ask for a service, it has to establish a session with the server exchanging some 

messages with it. Then the server will deliver to client a copy of the data 

requested. 

The one-to-one sessions can offer a high level of management of the 

communication channel between the source and the receiver, allowing for 

transmission rate changes, acknowledgment of receipt, requests for data 

retransmission if an error occurs . But the server needs to copy the data packet and 

deliver it to each host who has required it [3]. It means that the source has to emit 
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a copy of the message for each request: under this process it could became a 

bottleneck of the network, with the consequence to risk to get network congestion. 

Of course this kind of transmission increases the utilization of bandwidth and in 

consequence the general traffic on the network, too. 

So it can be drawn the conclusion that this approach is poorly scalable [4]. 

 

 

1.2 Broadcast transmission 
 

 As mentioned in the first section, the huge cost caused by using pure 

unicast transmission represents the most relevant problem to be resolved. It is due 

to the necessity to create a channel for each client asking for a service to the 

server. Under these conditions, the server becomes a bottleneck of the whole 

network, with negative consequences on the stability and the strength of the 

system. 

For these reasons, new ways of transmission have been implemented, with the aim 

of bringing down the costs sending more messages in one time. 

 The more traditional way to send multiple messages using the same shared 

medium is the broadcasting [3]: with this protocol it’s possible to transmit one 

copy of a message to all network nodes, letting the recipients free to decide to take 

it or not. Distributing the effort of copying packets among the networks hosts 

consists in advantage for the source, because the effort is shared among more 

points of the network. So, the server doesn’t represent a bottleneck anymore. 

For example, on an Ethernet LAN (Local Area Network), each computer has a 

hardware interface connected to the network by an Ethernet cable. Using this 

cable, each host can monitor the bus that connects it to all net, looking for some 

packets bearing a broadcast address. Then, the host will decide to receive or 

ignore the transmitted packets, according to its interest in carried contents. Proper 
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software mounted on each host has to take this decision, computing the packet or 

a part of it at least. 

It plays the role of a communication filter mechanism (fig. 1.2). 

 

 
Fig. 1.2: Simple schema of a network using broadcast communication 

 

The occupation of the bus during a broadcast call represents the most 

relevant problem of this communication modality, because the sending of a lot of 

broadcast messages might cause network congestion. 

Using broadcast transmission only as long as generated traffic doesn’t appropriate 

of a compromising portion of available bandwidth in shared channel is a good 

solution to avoid the congestion phenomena. Under this condition, 

communication filters should be considered a good compromise between using 

host resources and network ones [3]. 

 On one side, broadcast avoids the problem of bottleneck represented by the 

server in unicast communications, but on the other side this traffic could be 

useless if only few hosts are interested in the unicast messages carried in that 

moment [4](wasting of network resources, as shown in fig 1.3). 



 
 

Chapter 1                                                             Traditional Transmission Methods 
 

12 
 

 
Fig. 1.3: Example of  wasting of network resources (75% in this case) generated by a 

broadcast transmission  

 

For this reason, the general trend is oriented to minimize broadcast traffic. 

For example, in WANs (Wide Area Network), broadcast transmission is used for 

maintaining or diagnosing the state of the internetwork [3]. 

Finally, broadcast can be considered the opposite of unicast. In one hand, 

it resolves the problem of bottleneck represented by a server involved in a lot of 

unicast transmissions. As a matter of fact, using broadcast, the source is relieved 

from the task of duplicating any packet destined to multiple hosts: this job is 

transferred to the network devices (switches, routers, gateways), that duplicate the 

packets as needed to cover the network. But in other hand it creates some new 

problems. 

First, broadcast traffic can quickly grow out of control in large scale networks 

and, in the worst case scenarios, it can shut down the network and monopolize all 

of the available bandwidth [3]. 
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Second, the hosts are not always interested in receiving a broadcast message. In 

any case, their filter has to process the message, or at least a part of it, to 

understand if that message is useful or not for the host it belongs to. Of course this 

situation creates an unwanted computation and useless traffic on the channel. 

For the reasons showed, broadcast transmission could not be considered the best 

way of communication in a network, despite it has some relevant uses in some 

situations. 

 

 

1.3 Multicast transmission 
 

 Multicasting falls between unicasting and broadcasting, because rather 

than sending a message to a single host like unicast, or sending messages to each 

host like broadcast, it selects a group of hosts (host group or multicast group) 

and sends messages only to these hosts [3]. 

The host’s grouping is the innovation key introduced by multicast transmission. 

Thinking of a LAN, each host’s network interface accepts packets addressed to 

the multicast address corresponding to the host group it belongs to. Note that the 

group is identified by a special single multicast address. 

On a WAN, the situation doesn’t change much, it’s just a little bit more 

complicated because of internetworking: here the host groups have to be 

maintained in the entire WAN, for this reason routers, too, are involved in joining 

and leaving host groups procedures. 

Multicast system is very advantageous for several reasons: 

- multicast group is composed by some hosts sharing some specific 

characteristics, for example simply the physical location into the network. 

In this way, sending a message to reach a particular kind of host becomes 

simpler: it just takes addressing the message to a single multicast address 

to reach the requested users; 
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- using a multicast address helps to avoid bottleneck formations, because in 

this way message sources don’t risk to go in overload (it could easily 

happen if only broadcast transmissions are used); 

- avoiding pure flooding transmission, the wasting of bandwidth due to 

useless traffic can be reduced. Only some nodes (and it is supposed that 

they are the most interested in the transmitted contents, for the reason 

showed in the first point of the present list) are involved in the 

communication, so the risk of having network congestion is reduced [6]. 

 

A special class of IP addresses is reserved to reach every host belonging to 

the host group: class D. A generic IP address is composed of 2 parts: the first one 

represents the network ID, the second one represents the host ID. 

Furthermore, a generic IP address is represented by 4 octets of numbers separated 

by dots (for example: 88.6.243.251). The first 5 bits of the first octet determine 

which the class the IP address is in (A, B, C, D or E). Since each class supports a 

different number of networks and hosts, the partitioning of net id and host id 

changes from class to class. 

 

 
Fig. 1.4: IP address classes[7] 
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As figure 1.4 shows, class D addresses have no subnet mask, because all 28 bits 

are used to represent a host group, not a single host id. Thereby, in total there are 

228= 268435456 different addresses of class D. 

Another aspect of multicasting concerns the duplication of messages: just 

one copy of the message crosses each link of the network. Only when it reaches a 

router, some copies of it are made, and each of these ones is sent to a different 

subnetwork, started from a different network interface of the router (figure 1.5). 

This mechanism called multicast delivery tree, assures a consistent conservation 

of bandwidth, preventing loop formation, too [3]. 

 

 
Fig. 1.5: Flow of data and message duplication in multicast delivery tree  

 

Looking at the figure 1.5, it’s easy to see that in the end there are only 6 copies of 

the unique original message created by the source. 
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In the case of unicast transmission, 6 copies of the message would be created by 

the source, and the routers would not duplicate anything, but just forward the 

packet until the recipients. 

In the case of broadcast transmission in the same network of figure 1.5, it is 

necessary to create 12 copies of the message in total: 6 of these are useful (figure 

1.6), the others 6 copies represent the wasting of the network bandwidth. 

 

 
Fig. 1.6: Flow of data and message duplication in broadcast systems  

 

Sometimes the source might want to restrict the distance of packet path: 

for example source could want the packet not to overcome its subnetwork. 

To avoid that each packet crosses all network every time, a special value called 

TTL (Time to Live) is assigned to each IP packet. TTL is an integer number that 

represents the maximum number of hops that an IP datagram is allowed to 
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propagate. Each time a router forwards a packet, the TTL of the packet is 

decremented by 1: when TTL is 0, the packet is dropped [3][4]. 

Coming back at the previous example, the source has to fix TTL on 2  to maintain 

the packet inside the subnetwork only: in this way, when the packet reaches the 

first router, it is discarded without any notification error to the sender. 

 

 

1.3.1 Multicast routing algorithms 

 
Since in multicast there are some senders and a group of receivers forming 

a multicast group for each sender, designing effective routing protocols to 

determinate and maintain several paths becomes very important. Unlike unicast 

routers, multicast ones have to be aware of the data they exchange with each 

other. This information assures the forwarding of traffic in the network, and lets 

multicast routers have the knowledge of the network topology, too[3]. 

But there are also some additional issues derived from the dynamicity of the host 

groups: since every host can join or leave its host group at any time, the topology 

of a multicast network changes faster than a topology of a unicast or broadcast 

network [4][8]. 

For example in the context of broadcasting WAN network, there is no 

routing algorithm, the only method that exists is the flooding: when a router 

receives a multicast packet, it determines if it’s the first time the router receives a 

packet with that host group address (IP address of class D). If so, it floods the 

packet to the other interfaces (except the one the packet comes from, to avoid 

loops and wasting of network resources); if it is not the first time, it discards the 

packet (also this time to avoid network loops). Of course this is the simplest 

algorithm, but, as expected, it is also the most expensive one (it works like a 

broadcast routing algorithm, as figure 1.6 shows). As a matter of a fact, using a 

compare contents method result much more costly instead using the TTL. 
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On the contrary, in  multicasting some routing algorithms appear. As 

already said, the fundamental task that a multicast routing protocol has to absolve 

is the creation of a spanning tree of routers as better as possible, because good 

or bad network performances of routing depend on this tree [3]. 

By the way, it’s convenient to classify the routing algorithms according the 

method that they use to create these trees. So it’s possible to divide these 

algorithms in three categories : 

1. simple-spanning tree 

2. source based 

3. shared tree 

 

1. The first one is the simplest kind of multicast routing protocol and it can be 

implemented using a spanning tree: the name suggests that this algorithm 

creates a tree of links among hosts, in which every pair of routers is connected 

by a single path. By definition a tree doesn’t contain loops, and it is a good 

characteristic for routing, because it avoids cyclic recursions of packets in the 

network. Furthermore, since a tree minimizes the number of links between 

hosts, the number of copies of the multicast packets that each host has to make 

when it receives a multicast datagram is reduced. This algorithm is quite 

simple, but it can lead to concentrate the traffic among a small number of links, 

creating bottlenecks. 

It could be affirmed that the simple-spanning tree technique is very simple to 

apply, but it does not grant good performance in routing. 

 

2. The second category mentioned implies the construction of a delivery spanning 

tree for each potential source of the network. Since in the same host group 

many potential sources could exist, the system constructs a different delivery 

tree rooted in each of these sources. Because of these algorithms are based on 

the router’s knowledge of the shortest path back to the source, they are called 

RPF algorithms (Reverse-Path Forwarding). 
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They can be divided in three types: 

• reverse-path broadcasting (RPB): as long as a packet from a source 

arrives on a link that the local router believes to be on the shortest path 

back toward the packet’s source, the router floods the packet on all of its 

interfaces (except the incoming one). If the packet does not come from the 

shortest path back toward its source, it is discarded. 

The information about the various paths is maintained in a routing table. 

Because of multicast group memberships are not took into account during 

the construction of the delivery tree building, packets could be forwarded 

onto subnetworks that have no members in the destination host group. This 

behavior represents the major limitation of RPB. 

• truncated reverse-path broadcasting (TRPB): this algorithm uses the 

information about memberships to trunk the subnetworks from the tree, if 

there are no group members in them, with the aim to overcame the limit of 

RPB during the delivering phase. TRPB partially resolves the problem of 

RPB, because during the building phase it not even takes into account 

group membership, but it works later, during the delivery phase. 

• reverse-path multicasting (RPM): this algorithm use TRPB and a 

pruning technique together. When TRPB finds out a leaf of spanning tree 

that represents a subnetwork without any recipient of multicast packet, a 

message of pruning is sent to the router. Then, the router prunes those 

leaves from its memorized spanning tree.   

 

These methods are relative simple to implement but they generate more 

complicated and big routing tables. Moreover, they are not scalable and they 

waste bandwidth, especially if there are a lot of recipients at the edges of the 

delivery spanning tree. 

 

3. Rather than building a source-based spanning tree for each potential source of 

the network, a single delivery tree is shared among all member of a multicast 
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group. Under these conditions, a different shared tree is defined for each 

multicast group: so multicast traffic is sent and received over the same 

spanning tree, regardless of the source. To manage the routing, a Rendezvous 

Router is elected. The others routers encapsulate the multicast message in an 

unicast message and send it to the Rendezvous Router, that provides the 

multicast routing.  

 Since just one router is enough to maintain the information about one group, 

shared-tree algorithms use resources in a more efficient way then the source-

based ones. 

Besides, the number of the sources doesn’t represent a problem anymore, 

consequently scalability problems are resolved. But on the other hand, the 

Rendezvous Routers represent critical points of the network, in others words 

bottlenecks. 

 

In details, a rendezvous router or Rendezvous Point (RP) acts as a 

common point among different autonomous system. Its task consists in allowing 

multicasting across several networks. The mean aim is supporting routing of inter-

domain traffic, overstepping the intra-domain traffic limit of the normal 

implementation of multicast. Referring to a multicast shared tree, the RP 

represents the shared root [9]. 

There are several definition of an Rendezvous Point: 

• static RP, that is the simplest method. It consists in a static configuration 

of the RP for a multicast group range. Every router that point to the RP 

into the spanning tree is configured with the static RP address. Static RP 

may be an attractive option if the network is quite small and doesn’t 

change very often. On the contrary, in bigger networks it becomes too 

expensive, because if RP changes its address, each router of the network 

has to be reconfigured. 

• BSR (Bootstrap Router), an elected router that chooses the RP collecting 

information from some candidate RPs. It sends some BSR messages, then 
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the candidate RPs answer through a candidate-RP advertisement: these 

messages let the BSR elect the RP. BSR method is selfconfiguring and 

robust, so it works better than static RP in wide networks. 

• Auto-RP, consisting in an automatic method to elect the RP, based on an 

exchange of messages between the candidate-RP and the RP mapping 

agents. A reserved multicast address (224.0.1.39) is used in order to 

distribute automatically the information about the current RP address: all 

network routers just have to join this multicast group, and copy the RP 

address into their cache. Auto-RP and BSR can operate together in the 

same network. 

• Anycast-RP, that gives the same RP address to two or more candidate-RP, 

creating redundancy. The aim is improving the fault tolerance of the RP, 

because in this scenario if an RP fails, the other RP-candidate with the 

same RP address is activated in substitution. 

• Phantom-RP, in which no physical allocation is assigned to the RP-

address. As a consequence, the RP address could be an address in a 

subnetwork, without a location in a router interface. 

• Embedded-RP, that works very similarly to the Auto-RP, but it uses IPv6 

addresses. Even using this method, routers don’t need to be reconfigured, 

they has just to join a reserved IPv6 multicast group to catch  

automatically all RP information. 

 

Among these solution, of course static RP is the worst, but it is convenient in 

small scenarios. Anyway, the most attractive method is the Embedded-RP, 

because it is the only one that makes use of the advantages carried by IPv6 

address technology. 
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CHAPTER 2 

Peer-to-Peer Networks 
 

 

The previous chapter deals with the traditional approaches concerning the 

delivery of data from the source to the recipient. 

The first method analyzed is unicasting, in which there are one-to-one 

communications between the source and the various clients. According to this 

protocol, the source has to produce a copy of the packet for each received request, 

then it instantiates a reserved communication channel to permit the delivery of the 

message. As showed in chapter 1, this situations ends in several problems, such as 

wasting of bandwidth, formation of bottlenecks and poor scalability.  

Instead, in broadcasting and in multicasting one-to-many communications session 

let to reach several receivers using the same session: in this case, the source sends 

just one packet, then the routers will copy the packet according to the routing 

policy and the physical addresses locations of the addressees. Although these 

approaches avoid the problem of bottleneck, they result too much expansive 

(above all broadcasting), because a large amount of traffic could be created to 

control the data flow. 

 Because of the several problems of the traditional transmission modalities, 

based on the well-known Client/Server paradigm, new approaches, based on P2P 

(Peer-to-Peer) paradigm, have been implemented. The strongest point of p2p 

networks is their distributed nature: it can help to reduce bottlenecks formation 

(like in unicasting) and wasting of resources (like in broadcasting and 

multicasting). 
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2.1 Introduction to Peer-to-Peer world 
 

As said in the paragraph 1.1, there are two paradigms that characterize 

communication between two or more subjects. The more traditional 

communication modality is the well-known Client/Server, in which there are two 

distinct entities: 

- the Client, that asks for services from the network; 

- the Server, that uses its resources to provide services to the network. 

 

Because of the sharp-cut distinction of roles, the servers take charge of 

central points of the network, as a matter of fact network performances depend 

from them. Because of this aspect, Client/Server are defined as centralized 

systems: it’s a good way to maintain the total control of the network traffic, but, 

as it can be easily expected, this situation brings scalability problems [3]. 

This problem appears when the number of the clients becomes much bigger than 

the number of servers, that fall in overload and stop providing their services. For 

this reason, the growing of the clients has to take into account the number of 

servers, otherwise problem of network congestion could happen. 

Thinking that the number of clients is usually much bigger than the 

number of servers, can give an idea about the fault tolerance of the system: a 

server breakdown constitutes a resource loss for the network, so fewer services for 

clients. Besides, servers hardware has to be very powerful to manage a huge 

quantity of requests, and it represents a relevant cost, of course. 

The servers actually represent bottlenecks for the whole network, i.e. points of 

vulnerability that became more critical as the number of clients grows. 

Established these issues, researches have moved from centralized systems 

towards decentralized ones, to avoid the dependence of the network from few 

critical hosts. 

Peer-to-peer paradigm is based on this idea, in fact it has no roles division: there 

is just one subject, the peer, who can play like a server, sharing resources and 
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giving services to others peers, or like a client, asking for services from other 

peers, that act as servers in that given moment [3]. 

This new way of thinking to a network gives some advantages, first of all 

the independence from the resources of the servers machines. The network does 

not present point of vulnerability, because the resources are more distributed 

along the network. 

For instance, if a certain peer is not yet able to provide a service, the same service 

could be easily disbursed by another peer [4]. So, communications without a 

central point of control are allowed, creating direct message interchanges 

directly between the end-systems. 

The source is not fixed like in multicasting [3], but it becomes dynamic. This 

change improves the fault tolerance: changing of source-peer is enough to avoid 

losing of network resources and services.  Besides, mounting of very expensive 

hardware on the servers machines to support huge amount of requests is not 

necessary yet, because there isn’t any point of centralization of the requests. 

As a consequence, the risk of overloading is drastically reduced (moreover 

nowadays, more and more peers are equipped with very powerful resources, in 

terms of CPU, RAM, memory devices, network interfaces, etc…, that allow them 

connecting to the network through wide-large bandwidth). 

The probability to find the same service provided by several peers is so 

high because this sort of network might be constituted of thousands of peers. 

It is possible because p2p (peer-to-peer) networks don’t suffer of scalability 

problems: the entering of a new peer into the network doesn’t represent a threat to 

the stability of the system, on the contrary it contributes to add new resources to 

share among peers [4]. 

But this characteristic has its limits, because if the number of peers increase too 

much, the situation could get worse. Essentially, it is due to the limited upload 

capacity of some of the peers, that usually join the network using an ADSL 

(Asymmetric Digital Subscriber Line) connection [10]: it does not result efficient 

in supporting some particular data transmission, such as real-time multimedia. 
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Another problem of p2p networks is connected with the idea that they are a sort of 

shared environment in which several kind of independent applications, with 

different needs and resource’s requests, are executed simultaneously. In this 

situation several applications could reciprocally interfere, or a “resource race” 

could have place [4]. 

A typical bad situation of concurrency between application is the WAR (Write 

After Read) error. For example, if there is a file accessible in write and read 

modality,  it could happen that some users accede (in read access modality) to an 

old version of the file, because in the same breath other peers are modifying it 

(write access modality) and file updating is not been done yet. 

Another issue of p2p network is its incontrollable dynamicity. It refers to 

the fact that a peer can join or leave the network in every moment, without 

signalizing or giving any acknowledgments to the other peers it was 

communicating with. Because of these problems, constant and good quality 

performances are not guaranteed [4][10]. 

 

 

2.2 Routing strategies in P2P networks 
 

Peer-to-peer networks have a lot of advantages that can be taken into 

account in order to transmit very requested and popular contents. The most 

powerful advantage that p2p can give in improvement of the network 

performances is the possibility of using direct communications between end-

systems [4]. 

This new scenario causes a reduction of vulnerability of the network and better 

possibilities of scalability, but in the same breath the general traffic on the 

network increases. 

Generally, the raise of traffic in a peer-to-peer network is due to the using 

of flooding delivery method. This is because in a p2p environment, since there are 
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no central control nodes, sending packets in all directions to find the wanted 

resource, rather than using a routing algorithm aimed at a certain peer, could be 

simpler and faster. 

Because of flooding, peers should ask a lot of others peers to have more 

possibilities of finding the contents that they are looking for. In others words, the 

probability to find the requested information is proportional to the number of 

peers involved into the search. As a consequence, a large amount of traffic is 

created. 

In order to solve this problem, sometimes it’s preferable to renounce to a 

pure peer-to-peer configuration by the introduction of some centralized nodes in 

order to better control the traffic. In these “hybrid systems” there are some elected 

peers that assume the role of group managers. This solution could surely help the 

improvement of the routing, avoiding the brutal method of flooding, but in the 

same breath it implies the coming back to the Client/Server model, facing against 

its problems again. 

Hence, it’s better finding other solutions in order to organize the routing in 

p2p environment in a more efficient way. 

The first issue of p2p system is the random way used for the creation of groups of 

users. For instance, in multicasting a group of nodes is created according to 

receiver’s subscription [3]. Using this received oriented approach, controlling the 

transmission among the hosts results simple, so there are no big problems in 

managing the group. 

But in peer-to-peer contest it is impossible to decide how the groups have to be 

created, because there are no central entities to control them. So, groups of peers 

are often created randomly [11]. This situation is not preferable, because groups 

created in this way might have some problems of:  

• latency, because messages should go through lots of middle peers before 

they reach the recipient. Since these peers could not be members of the 

sender’s group, so could not be the actual recipients, this mechanism 

generates a big wasting of time; 
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• performance is degraded by slow peers that the packet might eventually 

meet along its path; 

• partial employment of peers bandwidth is used to shunt the traffic 

generated by others pees, in order to allow the message to end in the true 

addressee. 

 

Therefore, the most congenial solution is trying to use peer-to-peer 

advantages (above all potential scalability) in combination with a policy aimed to 

manage groups in a more efficient way. The idea is avoiding flooding and random 

group building. 

Publish/Subscribe[11] is a well adaptable model to peer-to-peer framework, 

because it is characterized by two subjects: 

- subscriber, that catches a message 

- publisher, that publishes a message 

 

At first view, Publish/Subscribe concept looks similar to Client/Server one, but 

there is a substantial difference between them: the former allows every peer 

joining one or more communication groups as publisher or subscriber, so the role 

of the peer can be changed whenever it wants; on the contrary, the latter does not 

allow peers to change their roles, so if one node is a client, it cannot become a 

server and vice versa. 

Because of its flexibility, Publish/Subscribe model is well adapted to 

dynamicity of p2p world. Furthermore, using JXTA[12] protocol, it is possible to 

realize data sessions among different communication peer groups. 

JXTA realizes an overlay network to maximize peers potentiality, also allowing 

communication groups interactions. 

These overlay structures are called virtual self-organizing overlay 

subnetworks[12]: 

- virtual, because they imply virtual relationships between nodes. So there 

are not any change in the physical layer; 
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- self-organizing, because each environment can organize itself according to 

the resources that the participants have and share; 

- overlay, because a peer could participate to more than one group in the 

same time, so these subnetworks can be intersected; 

- subnetwork, because they are constituted of peer participants in a 

communication group that, actually, could be interpreted like a 

subnetwork in application layer contest. 

 

An example of virtual self-organizing overlay subnetwork is shown in following 

figure 2.1, where it is composed by highlighted nodes and links. 

 

 
Fig. 2.1: A virtual overlay subnetwork in a Peer-to-peer network 

 

Adopting this structure it is possible to obtain also interesting results about QoS 

parameters, because its transmission among group’s peers can be controlled in a 

better way. Under these conditions, guarantying  a certain delay threshold or limit 

the bandwidth consumption become achievable. 
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The realization of a structure with these characters could be implemented 

through a multiring topology [11], as figure 2.2 shows. 

 
 Fig. 2.2: Scheme of a multiring topology 

 

The choice of this topology is justified by several factors, first of all the 

scalability: since each node is connected just with two neighbors (in the general 

hypothesis of only one ring), its workload is independent by the total number of 

peers. Furthermore, this characteristic makes easier to manage the traffic in a 

decentralized environment too, without the supporting of any central entity. 

If a greater reliability is requested, additional internal rings might be built as 

optional or backup paths. This expedient helps also in reducing the latency, 

because following these alternative links, some peers can be reached in less hops. 

As a consequent, backup path results faster than the external ring. 

Building additional rings means also increasing the workload of interconnected 

peers, because more than 2 links will be connected to them. That is the reason 

why the peers equipped with the most powerful hardware are located in these 

strategic points, in order to avoid collapses of the network and situations of 

imbalance.   

Another advantage of multiring topology concerns the delivery. In this 

situation, sending a message to all group’s members means just sending two 
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messages to the two neighbors. Afterwards each node receives the message and 

puts it in its internal FIFO (First In First Out) queue, until a sender process 

forwards the messages to the next neighbor. If a node receives the same message 

twice, it simply ignores the message (of course a control on message ID is 

requested). 

Even if on one side the introduction of backup rings increases network 

stability, on the other side it increases also the general amount of traffic, because 

one message might be received a lot of times by the same node. 

To avoid this situation, dual mode link [11] has been implemented. The idea 

consists in dividing the nodes in two modalities: 

- primary link modality, which allows immediately the sending of messages 

on the link; 

- secondary link modality, which does not allow the sending of messages on 

the link immediately , but a previous announcement is necessary. Then, 

only if the recipient side is interested in receiving the message, the 

delivery will be finalized, otherwise no sending will have place. 

 

Dual mode link creates an implicit process, in which the best paths to connect two 

or more peers are dynamically built. The system behaves as a network that adapts 

its topology to the ongoing message flow. For this reason, the dual mode link 

mechanism is also called implicit dynamic routing. 
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CHAPTER 3 

Video Delivery 
 

 

In the previous two chapters, traditional transmission delivery methods and 

delivery methods in peer-to-peer networks have been studied. Now the reader 

might have a general idea about the mechanisms of all these kind of transmission, 

about their strong points and their weak spots too. 

Usually, the video delivery deals with scenarios in which there is one source that 

spreads a video content towards a large group of receivers. Very often, a lot of 

simultaneous sessions, which have the same source or different ones, are 

established. This is due to the possibility of having overlapped groups, because a 

host may belong to many groups in the same breath. 

This chapter deals with some video delivery methods, comparing the 

situation in the various delivery transmission methods’ scenarios. Video delivery 

is so important nowadays because the users’ interest is growing more and more in 

this direction. 

The fast growth of broadband connections to the Internet network contributes to 

the spreading of this phenomena, because the diffusion of large-band connections 

allow more and more users to use multimedia contents and services, like VoD 

(Video on Demand), streaming live video of some events, videoconferences, 

Internet radio, etc… 
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3.1 Video on demand service 
 

 As pointed out in the first paragraph, the unicast transmission mode is not 

very efficient when the number of services requests increases: one copy of the 

contents for each session that must be established with each recipient that asked 

for it is necessary. Furthermore, the server hardware has to be very powerful, and 

of course costs grow up [3]. 

There is another aspect that must be taken into account: the content type. 

It’s easy to understand that users’ needs change in concomitance with the kind of 

data that have to be managed in the established channel. Of course, it’s necessary 

to get more bandwidth and less delay (and delay jitter, too) to transmit a video (in 

streaming or a preregistered one)  than to send an e-mail or a simple text file. 

For this reason, using an unicast transmission to transfer video in a network could 

be not very efficient, as some researches about the using of unicast transmission in 

VoD services have shown. 

First of all, it is rightful to briefly explain how a VoD system works. In 

this kind of system there are some video contents that can be viewed from clients 

under their specific request. The source establishes an unicast channel for each 

client who asks a video, and then starts to send it video packets. This mechanism, 

known as TVoD [13] (True VoD), represents high cost for its users, because the 

server that holds video contents should have a very powerful hardware to support 

a large amount of communications (for this reason it represents also a bottleneck 

for the whole network).  

On the contrary, there is another method called NVoD [13] (Near VoD) using 

multicast channels: the video is periodically sent without taking care about the 

clients requests. This system is cheaper than the first one, because it spends less 

bandwidth, but users should wait for same time before the system allows them the 

video download. 

 A right compromise between the two mechanisms is represented by UVoD 

(Unified VoD), a system that uses both unicast and multicast channels. 
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Multicast ones periodically (for example at pre-established time instants tm)  

transmit the video content, regardless of the number of user requests. Moreover, 

each channel stays alive until video end. 

Assumed that: 

- M represents the number of videos, 

- NM is the number of multicast channels, 

- NU is the number of unicast channels, 

- L is the duration of video in time units, 

 

the quantity 
M

N M  represents the number of multicast channels allocated per video 

object, and the total number of channel is simply the sum N = NM + NU. 

Finally, the offset between two adjacent multicast channels can be calculated as 

follows: 

          (1) 

  

 

The requests collected during the period T will be served by unicast channels, 

that, as said before, represent an high cost in terms of bandwidth. 

A predetermined waiting time δ has been established, To avoid that this cost 

grows up too much. It’s calculated as shown here:  

 (tm – t) ≤ δ (2) 

where the parameter t represents the time instant when a request is received. 

 As UVoD uses unicast and multicast channels, it is demonstrated [13] that 

an optimal number of multicast channels is obtained with the following formula: 

                                    (3)  

 

Utilizing this formula, it’s possible to obtain the number of multicast channels to 

avoid waiting for a video, considering that the parameters N and M are very huge 
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to be approximated to the infinite (i.e. N →∞ and M→∞) and imposing δ = 0 in 

(3): 

 opt
MN  = 0,5       ⇒       NM = NU (4) 

It means that the number of unicast channels has to be the same of the multicast 

ones, to avoid delay in serving the requests: it’s easy to understand that this would 

imply an exorbitant cost to admit. 

Besides, this formula (3) doesn’t take into account the request arrival time rate 

(from now on this parameter will be referred to as λ), and it is wrong because this 

is a crucial element in a VoD system. 

 Because of this mistake, enhanced UVoD [13] has been implemented, it 

consists of a new UVoD architecture taking in account of request arrival time. In 

enhanced UVoD there are also multicast and unicast channels, but the second 

ones are active only when there are no multicast channels available: this policy 

aims to minimize the unicast utilization to save bandwidth. 

In particular, considering that: 

- requests of video data come at arrival time instants t1, t2, t3, t4… tk; 

- t1, t2 < t3 < t4… < tk; 

- ti  ∀ i are independent events; 

 

it’s possible to approximate the requests arrival process with a stochastic Poisson 

process. 

According to these hypothesis, if the parameter λ becomes too high, the maximum 

number of unicast channels can be approximated, as showed in formula (5): 

  
δ
δTNmax

U
−

=              (5) 

This is the best worst scenario, because it has been supposed that the request 

arrival time rate is enough to consider true this approximation. 

Now, using the formula (1), T can be substituted in (5) to obtain the following 

result: 

                                        (6) 
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As before said, when some requests arrive during the time interval T, an unicast 

channel will satisfy it in the waiting time δ imposed, before the following 

multicast channel is activated. Supposed that in the system there are K not 

overlapped δ-windows it can be deduced that: 

- because of the δ-windows are disjoining, and for every one of them just 

one unicast channel works, K also represents the total number of unicast 

channels used in the whole network;  

- the number of requests stored up during a single interval time T is 

represented by the quantity λ(T- δ); 

- the amount of requests in a single δ-windows is δ λ; 

- the total number of requests in the network is λ(T- δ) – K. 

 

Therefore there are two different ways to express the same quantity, than 

following equation can be imposed: 

K δ λ = λ(T- δ) – K 
 

now using the (5) and the (6) the value of K (see formula (7)) that also represents 

the number of unicast channels can be extracted: 

  
1)(λN

)N δM λ(LKN
M

M
U +

−
==

δ
            (7) 

 

 As shown by comparing this formula with the (3), the number of unicast 

channel also depends on the request arrival rate, and it is more correct because 

this parameter plays a fundamental role in a VoD system [13]. 

Anyhow, NU is directly proportional to L and M. This means that if long videos 

have to be sent in a network with a consistent number of users, lots of unicast 

channels are necessary. Accordingly, it represents a too high cost. 

For these reason, using a unicast transmission in a VoD network is not efficient, 

and it can be easily deduced that the situation gets worse passing to a video-live 

transmission network. This kind of network needs more restrictive parameters, 
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such as a large bandwidth, a low delay and delay jitter, and these needs render 

unadvisable the submitting to a simple unicast transmission mode [3][13]. 

 

 

3.2 Unicast’s  limitations 
 

 As underlined more and more times during this chapter, unicast 

transmission mode has some limits when it is used in video data system, like VoD 

or UVoD [13]. 

Scalability is the most visible problem of this type of transmission channel, 

because it’s necessary one channel for each client asking for a data (at least one 

channel for every δ-window, as shown in enhanced UVoD systems [13]) under 

these conditions. When these clients became too many, the amount of traffic in 

network speedy increases. 

 The problems grow even more when video is the data type to transmit, 

because the volume of data (the situation worsens when video length increases) 

influences negatively the number of channels required to support all the incoming 

requests (referred to parameter L in formula (7)). 

Since in real-time video transfer networks there are also more strict constraints to 

respect, using an unicast modality of transmission could be very inefficient to get 

an acceptable quality and fluency of video streaming [3]. For example, video 

streams in IPTV (Internet Protocol TeleVision) [14] are first encapsulated in IP 

packets, and after distributed by IP unicast and multicast. This delivery method 

clashes with the classical broadcast system in cable and satellite TV. 

Savings gotten in substitution of broadcast modality with an unicast-multicast one 

justifies the choice taken by these researchers. 

By the way, this system uses unicast channels just when a user switch from a 

multicast channel to another one, because unicast transmission is faster but more 

expensive too. 
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It’s evident that the use of multicast communication is minimized in this situation, 

too, just because of its too high cost. 

 Nowadays, pure unicast system is not a good solution to support the 

constant growth of real-time services offered by the network. Nevertheless, it 

could be a consistent help to optimize performances of multicast transmission, 

because using multicast and unicast in a conjunct way, could turn out results more 

efficient and cheaper than using simple unicast (also than the traditional 

broadcast). 

 

 

3.3 Multicast in video live transmission 
 

A lot of applications have already been developed to take advantage of IP 

multicasting technology. For example, a streaming multimedia contents, like 

audio, video or combined audio-video, can be sent on a multicast network using 

the routing algorithms examined in the previous paragraph. 

The following table shows which are the most diffused categories of applications 

that can use multicast transmission: 

 

  Real Time Non‐Real Time 

Multimedia  Video server

Videoconferencing 

Internet audio 

Graphics and audio 

Video and Web services

Content delivery 

Intranet 

Internet 

Data‐only  Stock quotes

News feeds 

Whiteboarding 

Interactive gaming 

Information Delivery

Database replication 

Software distribution 

Fig. 3.1: Classification of multicast applications [3] 
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 Another example of the multicasting using is given by pushing 

technologies, i.e. systems in which the request of a transaction is started by the 

publisher (the server), rather than the subscribers (clients). The transported data 

could be news, stock quotes or, in general, some information of common interest 

for a large number of people. Even if in the past these systems used unicast 

transmission, using also proxy and caching servers to improve workload 

distribution, nowadays they use multicast, above all in real-time push systems [3]. 

 Since the use of interactive and multimedia applications has become large 

spread, today’s networks have rapidly evolved to support the transmission of these 

contents. 

A multimedia can be defined as a combination of more kinds of digital contents, 

such as video, audio, text, pictures and graphics. But, to define a data like 

multimedia, at least two of these forms are enough. 

Because of ever-increasing number of users interested in multimedia, a wide 

variety of multimedia applications has been diffused: crossing from unicasting to 

multicasting had place just to support this trend in a better way. 

The figure 3.2 represents the most diffused categories of multimedia applications: 
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Fig. 3.2: Categories of multimedia applications[3] 

 

Multimedia data need more strict constraints to be sent, especially if they are real-

time, too (on top-left side of figure 3.1): apart from bandwidth, delay, jitter delay 

and packet loss rate assume a key importance in this scenario. 

For instance, the well known YouTube is a pull video streaming system in 

which there are more than one million of video views per day. Founded in 2005 

by Chad Hurley, Steve Chad and Jared Karim, nowadays it has became the leader 

in the online video field, as a matter of a fact it represents the biggest video 

sharing platform of all Internet. 

YouTube allows people to upload and share video clips in several ways, such as 

mobile devices, blogs, e-mail or simply websites. It uses the Adobe Flash 

technology in order to render its video contents: video are converted and 

visualized in flv format. The key of its success and incredible grow is its 

simplicity and intuitively [1]. 

Because of the dynamicity of multicast groups, several messages to exchange 

information about network conditions are necessary to assure a certain level of 

performances in transmission of multimedia contents.  
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Multicast session usually relies on the RPT/RTCP protocol: 

• RTP (Real Time Protocol) flows carry multimedia data, so they represent 

data traffic; 

• RTCP (Real Time Control Protocol) flows carry signaling and 

synchronization data creating control traffic. Inside these messages, 

information about network conditions (ratios such as network packet loss 

rate, available bandwidth, maximum latency, variance of maximum 

latency) are encapsulated. 

There are two kinds of messages: SR (Sender Report), carrying feedbacks 

from source to receiver, and vice versa RR (Receiver Report), carrying 

feedbacks from receivers to the source. These reports are necessary to let 

the source adapt its output rate to the network conditions (for example 

based on these feedbacks, source can decide if it is opportune sending 

additional enhancement layers of the video or not)[8]. 

 

Among the mentioned ratios, the most critical one is the available bandwidth. 

Although new technologies, like Gigabit Ethernet, might resolve the bandwidth 

problems, providing bigger channels to the clients, anyhow the situation about 

network latency and jitter delay is still complicated to solve. Real-time data 

requires also some type of bandwidth reservations based on QoS parameters, as 

well as priorities. 

For all these matters, the traditional best effort service provided by IP protocol is 

incompatible with multimedia data, above all if a live video streaming service is 

wanted. As a matter of facts, this particular kind of service requires specific QoS 

parameters, such as to limit the bandwidth between 128 Kbps and 1 Mbps [3].  

But even in a VoD transmission, some particular QoS parameters are 

required: here the quality of the video also depends on its popularity, as well as 

from the number of users that chooses viewing the same video in the same time. 

Some evaluations and measurements made on the occasion of the 2008 Beijing 
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Olympics games, show that user behavior plays a crucial role in establishing the 

quality of delivered videos [15]. 

For example, the analysis indicates that 80% of the users only watch the first 10 

minutes of a video, regardless of the video duration. It means that caching the 

initial segments of the video, instead of the whole one, can optimize the utilization 

of memory resources. 

As often as not, VoD services allow users to utilize full streaming functionalities, 

such as pause, seek, rewind etc… The same researchers indicate that only few 

users actually use these functions. It implies that simpler delivery modalities on 

VoD systems can be implemented, decreasing the computational cost of the 

algorithms and maintaining still high the user satisfaction in the same time. 

Since the evaluations regards the Olympics games, that represents one of the 

worst-case scenario for VoD system (because it’s live, event-driven, large-scale 

and long in duration), better performances are expected in normal conditions. 

By the way, in VoD or in live streaming video, there are usually more than one 

recipient. So, efficient delivery methods are indispensable to avoid overloading 

network bandwidth: for this reason, IP multicasting has been largely utilized to 

optimize multiple deliveries [3]. 

Combining multicasting with QoS based resource reservation strategies 

could help in getting much better video live streaming results. But it’s not enough 

yet, because there are some problems about using multicasting, bound to the 

necessity to construct a spanning tree referring to all recipients of an host group 

(shared tree algorithms [3]). 

It is a problem, because to allow the routers to get the knowledge to build a 

spanning tree like this, a lot of messages between routers have to be sent, risking 

an overload of the network. 

Because of new multicasting IP-based multimedia services often don’t require 

many-to-many communication offered by the well-known ASM (Any Source 

Multicast), a one-to-many approach is preferred. So SSM [8] (Single Source 

Multicast) has been implemented to support this new trend. Usually, one source 



 
 

Chapter 3                                                                                            Video delivery 
 

42 
 

has many sessions with many receivers, therefore it supposed that SSM is the best 

method to provide all kinds of IP-based multimedia sessions one-to-many, such as 

streaming IPTV. 

One of the most relevant advantages offered by SSM regards the implementation 

of the spanning tree: having only one source makes simpler to build a tree, 

because it will have a unique root. Another benefit is the achievement of a better 

control of the established sessions. For example, localizing distribution problem 

of particular hosts is simpler, because crossing a one-root spanning tree is faster 

than crossing a multi-root spanning tree. 

 

 

3.4 Multicast’s limitations 
 

Drawing a conclusion about multicast, it’s certain that this protocol faces 

the frequent necessity to address the communications to several recipients in a 

good way. 

As a matter of facts, it avoids the wasting of bandwidth, that, on the contrary, 

unicasting generates allocating a single one-to-one session for each subscriber, 

creating also bottlenecks of the networks. Besides, it also solves the problem of 

flooding used in broadcasting, avoiding useless deliveries to not interested hosts. 

In this way the overloading problems decrease. 

There are also some common issues among unicasting, multicasting and 

broadcasting, for example routers updates data represent a scalability problem the 

more network grows, the more packets are necessary to keep routing tables 

updated. 

But multicasting has some issues that unicasting and broadcasting have 

not. For instance, TCP feedback or error packets are very useful in unicasting, 

in order to implement the error and flow control. But in multicasting these reports 

cannot be used, because it can be expected more sources of feedback from a 
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multicast session than from a unicast session. So, using an unicast-style method, 

the source would be easily overloaded. 

For this reason, different techniques are necessary to manage the big amount of 

control data created in a multicast session [3]. 

Another problem of multicasting is the necessity of the routers of 

maintaining the knowledge of network topology. In a large part of multicasting 

schemes, the routers have the responsibility to inquire each other about the 

location of the participant hosts. 

It means that every router has to know every variation in the delivery spanning 

tree, to avoid sending messages to leaves (subnetworks) without any host group’s 

member inside. This refreshing costs enough, because a lot of control messages 

are necessary to maintain the consistency of the knowledge of the all routers. But 

the question is also about scalability, because as the number of members of the 

host groups increases, the amount of information that routers have to store grows. 

Besides, this additional data to be managed might pinch off resources destined to 

others router’s tasks. 

All these points make obvious that multicast routing protocols are not designed as 

well as to scale multicasting until covering the entire Internet. 

 As mentioned in this chapter, the necessity to use QoS-based resource 

reservations combined with multicast delivery methods, is the consequence of 

recent multimedia diffusion. 

In order to guarantee QoS parameters through a resource reservation, several new 

protocols have been developed. For instance RSVP (Resource Reservation 

Protocol) is a protocol that aim to divide the network traffic according some QoS 

requirements, communicated through a flow specification data structure [16]. 

A filter specification is associated to each data structure, in order to connect the 

QoS requirements to a particular data flow (flow specification along with filter 

specification form the flow descriptor) [17]. 
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RSVP discriminates the traffic in three different categories: 

• best effort traffic, i.e. the traditional IP traffic. Flow of this kind are 

processed by the usual best effort service of the IP networks [16]. The 

application associated to this category are file transfer, mail transmission, 

transaction traffic, disk mounts, etc… 

• rate-sensitive traffic, that offers a guaranteed bit-rate service in which the 

bandwidth has to be chartered, even at the expense of the delay. For 

example, H.323 videoconferencing use this kind of service, because it 

needs a (nearly) constant rate. 

• delay-sensitive traffic, in which the focus is the reduction of the delay, 

also giving up the bandwidth consume. In this case, the rate change 

accordingly to the required time limit of delivery. For instance in MPEG-2 

there are two kinds of frame: key frame, that represents a real data, and 

delta frame (smaller), describing the changes compared to the key frame. 

So the delta-frame rate varies, in order to stay into the designed time limit. 

The delay sensitive traffic can support the controlled-delay service and the 

predictive service. The latter is a non-real time service, the former is a 

real-time service. 

 

Another important aspect of RSVP is the Reservation style, that defines the 

parameters with which the reservation is defined. The reservation can be distinct, 

if for every flow of the session corresponds a sender, or shared, if several senders 

use the same flow without interferences.  

The fixed-filter (FF) style (distinct reservation) implies a different reservation for 

each sender. So the total reservation on a link in a certain session is the total of the 

FF reservations for all requested senders. 

In the wildcard-filter (WE) style (shared reservation) all senders share the same 

resource reservation, propagated upstream towards all senders. When a new 

sender appears, the resource reservation is automatically enlarged to it. 
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Finally, in the shared-explicit (SE) style (shared reservation), the receiver making 

the reservation specifies an explicit list of senders that can share that reservation 

[17][16]. 

But supporting services such as bandwidth reservation or latency 

guarantees, to offer the quality asked by each recipient, could end in a overloading 

of the network. It happens because the network should transmit a consistent 

amount of traffic (because multimedia contents are usually larger than others) 

from one source (that, as previously said, can converts in a bottleneck, causing 

network congestions) to multiple addressees  at the same time. 

 

 

3.5 Video transmission in P2P networks 
 

Since peer-to-peer networks have more potentialities about scalability than 

traditional Client/Server ones, p2p approach can be implemented in transmission 

of multimedia data. In recent time, multimedia contents are the most requested 

and the most popular data on Internet, as a matter of fact a multitude of 

multimedia applications are spreading toward this field. 

Among the multitude of multimedia data, video is the most popular, but it also has 

more requirements in terms of bandwidth. Indeed it needs between 10kbps-

5Mbps, but many compression methods can reduce its consumption. Using also 

some adaptive coding methods, it is possible to modulate video’s quality 

according the variability of the network conditions (MPEG-4 scenes for example 

[17]). Another stringent constraint in video transmission is the end-to-end 

latency. 

Dealing with video contents in peer-to-peer networks, three kinds of transmission 

can be distinguished: 

- delay tolerant file download of archival material [18], in which there is 

a certain elasticity in completion of video download before starting with 
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its visualization. There is a receiver buffer that keeps the data until video 

transfer finishes, afterwards it gives an acknowledgment to the user to 

notify the download completion. In the end, user starts to play video 

without stops or quality degradations. 

- delay sensitive progressive download (or streaming) of archival 

material [18], in which there is an application that decides the instant in 

which video playback can start. This estimation aims to start video 

rendering as soon as buffer is sufficiently full in order to let user see video 

without interruptions. Actually, the application makes this evaluation 

considering that the difference between download rate and playback rate 

never should deplete the buffer before the end of file. 

- real-time live streaming [18], in which just an initial buffering of not 

more than a few seconds is tolerated. This is because the main goal in this 

case is allowing the recipient start to see something almost immediately. 

Of course, among the three modalities here presented, real-time live 

streaming has the most stringent delay requirement. 

 

Because of the soaring interest in videos, lots of peer-to-peer commercial 

applications working in video live streaming, such as Joost, LiveStation, 

SOPCast, TVants, Zattoo[18], PPLive[19], etc. have been introduced in recent 

years. 

These systems take advantage from peer-to-peer distributed environment: as a 

matter of a fact, in p2p networks finding video contents is easier than in 

Client/Server ones, just because usually p2p networks are constituted of a 

multitude of nodes, each of which shares its resources, its files and its multimedia 

contents too. Reaching a so huge amount of nodes is very difficult in 

Client/Server environments, due to more stringent scalability limits [8] (the 

dependence of servers’ capabilities is the most heavy limitation). 

A widespread communication technology that use peer-to-peer networks is IPTV. 

Because of its potentially hundreds of millions of users, it is impossible thinking 
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to realize an IPTV architecture in a Client/Server network, because managing a so 

large amount of clients needs a lot of power servers, and it should cost too much. 

For this reason, IPTV is used on p2p networks, through which it is able to provide 

watching video streams until about 500 kbps per user [19]. 

 Another field of application for peer-to-peer network is the satellite TV. 

Zattoo[18] works in this contest, it is one of the most popular live streaming 

providers in Europe and it consists of a peer-to-peer live streaming system that 

rebroadcasts satellite TV on internet. Zattoo is constituted of more than 3 millions 

of registered users, with a maximum of over 60,000 concurrent users on a single 

channel. For each TV channel a p2p delivery network is dedicated, so peers can 

switch among channels just leaving and joining these p2p networks. 

Joining operations are quite fast, as a matter of a fact they comport a medium 

delay of 2-5 seconds. The only limitation in this sense is that peers can join only 

one network at any one time.  

Zattoo is defined as a received-based peer-division multiplexing (PDM) protocol, 

because the receiving peer can decide how to multiplex a data stream, electing by 

itself a set of neighboring peers with which to share its contents. A virtual circuit 

of neighboring peers is built to avoid the forwarding of several pre-packets 

handshaking among peers. This circuit is maintained until the joining peer 

switches to another TV channel. 

The architecture of a typical TV channel on the Zattoo network (showed in 

figure 3.3) is constituted by two main clusters of servers: the broadcast servers 

perform the operations concerning the download from satellite (H.264/AAC - 

Advanced Audio Coding - stream), than the encryption of data and finally the 

delivery to the viewers; the administrative servers instead work on all operations 

concerning control deliveries and users’ authentication. 
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Fig. 3.3: Zattoo single channel architecture 

 

In detail, in broadcast servers block there are: 

- the satellite, i.e. the video source; 

- the demultiplexer, that encodes the signal from satellite into a variable-bit 

rate stream. If source is busy, generated data is packetized into a packet 

stream, each of these ones has a limited size (fixed maximum); instead if 

source has not a big workload to attend, no data is generated; 

- the Encoding Server, that multiplexes the packets streams as segments 

constituted of n logical sub-streams. Fixed the parameter i as packet index 

(1 ≤ i ≤ n) and m as segment index (m ≥ 0), this server works as a cyclic 

mechanism. Now fixing the parameters: 

• x= n·i 

• y= m·n+i 
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it can be deduced that the x-th packet belongs to the x-th sub-stream. Since 

each sub-stream carries the y-th packets, the number y actually represents 

the sequence number of the packet; 

- the router, to deliver the packets to the recipient peers. 

 

Instead, in the administrative servers block there are: 

- the Authentication Server, necessary to let a peer able in receiving the 

signal of the channel. Upon authentication procedure, the user is granted a 

ticket with limited lifetime; 

- the Rendezvous Server, that receives the tickets from the users who want 

to view a TV channel. If the ticket authorizes a particular user to watch a 

particular TV channel during a certain time, the Rendezvous Server 

returns to this user a list of peers currently joined to the correspondent p2p 

network (carrying the selected channel) together with a signed channel 

ticket. If there are no peers connected at that time, the user receives only 

the Encoding Server. Afterwards the user contacts the peers presented into 

the received list, receives from them a live stream of the channel, finally 

joins the channel and starts to view the video content; 

- the Feedback Server, that collects users’ error logs submitted 

asynchronously by users. 

 

Because of extremely dynamicity of a peer-to-peer network like Zattoo, an 

algorithm to check and avoid errors on the channel is required. 

For this reason, Zattoo employs the Reed Solomon error correcting code (RS-

ECC) to forward error corrections. It is a systematic code, based on redundant 

information: in a segment formed by n packets, k < n of these ones contain the 

actual data information, others n-k ones just carry redundant data necessary to 

control if data received are corrupted or not. 

Since the high variability of source bit rate, some segments could be of size less 

than the maximum allowed into the system: it doesn’t represent an efficient 
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condition to compute quickly the RS algorithm, so these smaller packets are 

“zero-padded” to the maximum packet size. 

As mentioned above, IPTV is an emerging internet application that uses 

peer-to-peer networks. 

For instance, PPlive[19] is a free peer-to-peer architecture for IPTV application, 

and it is defined as a mesh-pull p2p streaming system. In this network, carried 

video contents are not property of PPlive, but they are forwarded from TV 

channels. According to some measurements, published on PPlive website in May 

2006, this p2p framework provides more than 200 different channels, with an 

average of 400,000 daily users. The majority of the channels has a bit rate of 

video programs into the 250 kbps - 400 kbps range, but few channels can reach 

also 800 kbps. 

 
Fig 3.4: Mesh-pull p2p live streaming architecture[19] 

 

As figure 3.4 shows, there are 3 entities into the system that perform 

different tasks. The Channel Streaming Server converts the multimedia content 

into small video chunks, to provide a simpler delivery to the peers. Instead the 

Tracker Server, takes charge of all operations aimed to allow peers join the 
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network and download video chunks from multiple peers. It provides to each peer 

all information about joined peers and relative available chunks of the media 

content of interest. In the end, the Streaming Peer Node is the usual peer that can 

download or upload video chunks on the network. It is constituted by: 

• a streaming engine, that executes all operations about download of video 

chunks from others peers or directly from the channel streaming server; 

• a queue, inside to the streaming server, in which chunks are stored before 

rendering the video; 

• a multimedia player, that takes care of reassembling chunks and play-

backing the video to the user (for instance, Windows Media Player or Real 

Player). WMV (Windows Media Video) and RMVB (Real Media Variable 

Bitrate) are the two video formats used to encode the channels’ streams. 

The video display mechanism is based on some interactions between the 

streaming engine and the multimedia player, as figure 3.5 shows. 

 
Fig 3.5:Interactions between Steaming Engine and Media Player inside a Streaming Peer 

node of a mesh-pull p2p live streaming system[19] 

 

When the waiting queue has collected enough contiguous chunks, the streaming 

engine launches the media player and then sends an HTTP request to the 

streaming engine. In the end, the engine answers sending the video to the media 

player. The media player also has an internal queue to buffer the received chunks 

from streaming engine. When this queue becomes enough full, video rendering 

starts. 

If during playback, the streaming engine becomes disabled to continue in 

providing the video player with sufficient chunks (for example if some source 

peers has leaved the network, streaming engine needs time to look for others 
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sources), then the media player will starve. Starvation could be more severe or 

less severe: in the first case the video will be frozen for a certain time, in the 

second hypothesis the media player will skip some video frames, but the 

rendering of video will not been interrupted. 

 

 

3.6 Limitations of live video transmission in peer-

to-peer network 
 

As already said before, large-scale peer-to-peer streaming applications are 

developing very quickly in recent times in all Internet network. One kind of these 

applications is represented by the mesh-pull p2p streaming systems, in which 

different entities that work jointly to deliver chunks of video among peers (like 

PPlive[19] network). 

Some studies about the latter have revealed that on one side they are able to 

accommodate millions of users at the same time, managing hundreds of channels 

too; but in the other side they cannot grant a given streaming quality to the all 

users and in each channel simultaneously [20]. 

The term streaming quality of a channel refers to the percentage of high-

quality peers in the channel, where high-quality peer parameter indicates a peer 

that has more than 80% of its playback buffer full of video chunks. The 80% 

buffering level (referring to a mesh-pull system, actually it represents the number 

of consecutive blocks stored into the queue inside to the streaming server of a 

streaming peer node [19]) is an empirical threshold based on some analysis that 

show it reflects the playback video continuity of a peer in the following 5 minutes. 

According this, these researchers have taken it as a benchmark for them work. 

In this work, more than two terabytes of data have been collected during one year 

from UUSee[20], one of the most famous large-scale commercial p2p live 

streaming framework in China, along with PPlive[19] and PPStream[20]. 
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The aim was studying users’ behavior and network’s inefficiencies.  

As already pointed out, streaming quality is a very important factor to 

determinate the user satisfaction degree in p2p networks that work in video 

streaming delivery. For this reason, finding the triggering causes of these 

inefficiencies assumes a critical importance in determining the achievement or the 

failure of the system. 

 After these studies, it has been found out that the most influential factors on these 

inefficiencies are: 

• the number of peers in a channel, as a matter of a fact peers in large 

channels enjoy a better streaming quality, on the contrary peers in smaller 

channels usually get less server capacity, so low streaming quality. 

This is because the volume of peers in a channel follows a sort of “inverse 

demand and supply law”: if several peers are asking for the same video 

content, the demand increases along with the supply (in this case supply 

means portion of resources, in terms of streaming quality); vice versa if 

peers ask for the same video content are less, the demand and the supply 

too decrease. 

The scenario is more complicated, because (fixed the previous law) in both 

kinds of channels the situation gets worse during daily peak hours, when 

the maximum number of users is reached. During these hours, the 

streaming quality suffers of a generalized decrease. 

• server capacity, because it still plays a fundamental role also in p2p 

streaming networks, above all during peak interval times. Besides, server 

upload bandwidth becomes an important factor when upload peer 

bandwidth doesn’t aid enough to the total available bandwidth on the 

network: if it becomes too less, some peers could get bad video quality for 

a variable-long time interval. 

• inter-peer bandwidth availability, that represents the most evident 

advantage that p2p networks have against client/server ones. This 

bandwidth is the main source of upload in a p2p streaming channel, so if 
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number of peers increases too much, especially during daily peak hours, 

inter-peer bandwidth could became not enough for supporting all the 

traffic. In this case, it becomes a significant bottleneck of the network. 

• intra-ISP (Internet Service Provider) and inter-ISP peer link 

bandwidth availability, that reveals some possible inter-peer bandwidth 

bottlenecks in the vicinity of ISP boundaries. 
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CHAPTER 4 

LISP and Corecast 

transmission 
 

 

 A lot of problems there are still in the video delivery, above all when 

unicast, broadcast or multicast are used. It is due to the Client/Server nature of 

these traditional transmission methods: in this kind of networks there are less 

possibilities of scalability. This is because the resources and the services that can 

be provided strongly depend from servers’ capabilities and quantity. 

Even if the adoption of multicasting in the network layer represents the best 

method to distribute the video live streaming transmission, it involves high 

deployment costs. 

The situation gets better in the peer-to-peer networks, because they have 

no central entities that provide services. Since the p2p network is a decentralized 

environment, there are equal nodes that can exchange data and share resources 

directly, without passing through any server. 

Nevertheless, some problems still remain in the p2p networks: first, because of the 

absence of central units, it is more difficult adopting the control flows; second, the 

extreme dynamicity due to the continuous leaving and joining of peers from the 

network, makes complicated getting the total control of QoS regarding to each 

peer. 
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Since the QoS parameters play a decisive role in the video delivery, 

researches are oriented towards finding new solutions to improve video services 

on the p2p networks, above all in the mesh-pull live streaming peer-to-peer 

networks. 

About this theme, in this chapter a new efficient inter-domain live streaming 

architecture that operates on top of LISP (Locator/ID Separation Protocol) is 

presented: Corecast. 

Before to entering into the heart of the Corecast’s functionalities, it is appropriate 

to deal with LISP, understanding its mechanism and its functions. 

 

 

4.1 The Loc/ID split 
 

The researches’ efforts are constantly oriented to finding better routing 

systems in order to support the scalability and the dynamicity of the modern 

network environments. The situation in the Internet, with the growth of the DFZ 

(Default Free Zone) routing tables, is becoming an actual trouble [10].  

One of these studies is oriented towards giving some modifications to the 

addressing allocation system. The idea starts from the studying of the well-known 

IP address. It consists of the numeric address composed by the four decimal 

numbers, each of them represents a group of 8 bits. 

The function of the IP address is essentially gives an unambiguous identification 

for each network interface that connects hosts or associated devices to the Internet 

[21]. Even if the general idea is that IP address accomplishes only one function, 

actually it plays a double role (figure 4.1): 

- locator role, because the IP address indicates the paths used to reach the 

end-host; 

- identifier role, because the IP address identifies (using the ports) the 

endpoint of transport flows. 
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Fig. 4.1: Representation of the double role of IP address in a general network: identifier 

role (blue line) and the locator role (red line)[21] 

 

Since this statement of fact, the idea to separate these two function was born. This 

separation is known as Loc/ID split [22], and it aims to divide the two pre-

mentioned functions in this way: 

- Routing Locators (RLOCs), which describe how the device is linked to 

the network. The RLOCs are globally routable and attached to the routers. 

- Endpoint Identifiers (EIDs), which define the identity of the device, 

using a single numbering space (the IP address space). They are not 

globally routable, so hosts in a given area are expected to use EIDs in the 

same prefix. 

 

Supporters of Loc/ID split are convinced that this double function of the IP 

address makes impossible to create an efficient routing protocol; instead through 

the separation of the function in two, they assure that a better scalability of the 

system will be achieved. 

This firm belief is supported by the Rekhter's Law [22], according to it, 

there is an actual existence of two contrasting purposes that RLOCs and EIDs try 

to get. The law affirms that the RLOC and also EID addresses must be assigned in 

a way congruent with the network’s topology, in order to render a routing system 

efficiently scalable. In this way, a more accurate aggregation of RLOCs can be 

obtained. 

An example of identifier that already exists in Internet is the loopback address: it 

is implemented in routers and it is not tied to a particular physical interface. For 
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this reason, loopback addresses are always directly published by the routing 

protocols and they remain reachable while one (at least) router interface is up. 

Usually the EID doesn’t follow topology’s structure, but it is bounded in 

some organizational criterions of assignation: for this reasons, a strong 

incongruence arises. Because of network’s topology and organizational 

constraints are almost always in contrast, the realization of a single efficient 

address space, in order to follow both purposes (without imposing too strict 

restrictions), is very hard, if not impossible. 

In the end, this reasoning affirms that an effective routing system has to be based 

on topological bases, otherwise wide scalability’s potentialities are not reachable. 

In this scenario, the Loc/ID split represents the best solution to resolve this 

problem. 

 

 

4.2 LISP description 
 

According to the Rekhter's Law [22] mentioned in the previous paragraph, 

the separation of locator and identifier functions is necessary to implement an 

efficient and scalable routing system. This operation of division is known as 

Loc/ID split. 

Many researches are working to find suitable methods to enforcing the Loc/ID 

split, but nowadays nothing has been standardized yet. Basically, the usual 

approaches to implementing the Loc/ID split is the map-and-encap. This method 

is composed by two steps: 

1. In the map phase, if a node wants to send a packet to a destination node’s 

EID outside its domain, it is necessary a mapping of the destination EID to 

a RLOC. So the mapped RLOC refers to a border router belonging to the 

destination domain. This conversion is executed on the border router of the 

source domain [21]. 
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2. Subsequently, the encap phase starts: the source border router sets the 

destination address according to the RLOC obtained from the mapping 

process, then encapsulates the whole packet. 

 
Fig. 4.1: Structure of packet’s header processed with the map-and-encap method 

 

According to this scheme, the packet has an inner-header, constituted by 

source and destination EIDs, and an outer-header, composed by source 

and destination RLOCs (as showed by figure 4.1). This double operation 

makes able the destination border router to decapsulating the packet and to 

forwarding it to the recipient [22]. 

 

The map-and-encap method does not require any changes in the core routing 

infrastructure, furthermore it can work with both IPv4 and IPv6 (of course address 

rewriting method cannot work with IPv4) and return the original source address, 

without any modification. This last feature is useful in some cases. 

As a matter of a fact, the Locator/Identifier Separation Protocol (LISP), 

one of the most reliable implementation of the Loc/ID split, is a network-based 

map-and-encap protocol. 

It is also an instance of the jack-up architecture [22], because it is interposed between 

physical layer and network layer of TCP-IP stack. So, it jacks up the whole stack: 
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Fig. 4.3: TCP-IP stack with the added LISP layer [22] 

 

LISP specifies two new network entities, that can physically coexist in the same 

router [10]: 

- the Ingress Tunnel Router (ITR), a router which receives in input a 

packet without LISP header (i.e. with a single IP header) and produces in 

output a LISP-encapsulated IP packet. An EID-to-RLOC mapping process 

has place into the router, but only if it has not been done yet for that 

particular EID. After this conversion, a LISP header is appended to the 

packet before the forwarding toward the Internet. This LISP header 

contains the result of the mapping (an inner IP address treated as an EID) 

in the destination address field and the RLOC in the source address field 

(since the RLOC is globally routable, it is considered as an outer IP 

address). 

- the Egress Tunnel Router (ETR), a router which receives a LISP-

encapsulated IP packet in input and sends a decapsulated IP packet in 

output. Actually, ETR takes the outer address from the LISP header, then 

strips it down and forwards the packet according to the next IP address 

headed. 
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It can be elicited that an efficient mechanism to map an Endpoint Identifier 

onto the Routing Locator(s) of the site router(s) is necessary to execute the 

encapsulation of the LISP packet. This process is known as EID-to-RLOC 

mapping. 

There are three types of mapping mechanism: the push model, in which a mapping 

table is received by the LISP map server through a certain protocol; the pull 

model, where the routers receive a packet unmapped every time, then they ask for 

the information to the mapping mechanism and refresh their mapping table; in the 

end there is a hybrid model, in which push model is used only for popular 

mappings, otherwise pull model is used. 

 In each of these models, the LISP packet assumes the same structure. In 

figure 4.4 a LISP header for IPv4 is shown. 

 
Fig. 4.4:LISP header format for IPv4 [22] 
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As previously mentioned, LISP is a map-and-encap protocol, (also backed by 

Cisco) so in its header there are two well split parts: on one hand the source 

Routing Locator (source RLOC) and the destination Routing Locator (destination 

RLOC) belong to the outer header (OH), on the other hand the source Endpoint 

Identifier (source EID) and the destination Endpoint Identifier (destination EID) 

situated in the inner header (IH). This separation is a pure representation of 

Loc/ID split. 

LISP has great potentialities to improve network’s performance, because 

using it makes possible to split the locator function and the identifier function. 

As already pointed, this split generates improvements in scalability and routing 

system efficiency, because a greater aggregation of RLOCs, based on network’s 

topology (according to the Rekhter's Law, it is an inescapable issue in order to 

obtain a better routing system) should be accomplished. 

Also some additional advantages, concerning security and network 

mobility, could be obtained using LISP [22]. 

Besides, no big changes to the Internet framework are required: for instance LISP 

implementation does not imply hardware or software changes to hosts and to the 

router’s hardware too. Furthermore it can minimize or avoid packet loss through 

EID-to-RLOC mapping [21]. 

 

 

4.3 CoreCast’s proposals and aims 
 

As already explained many times, the diffusion of users with broadband 

connections to the Internet has caused the growing of people’s interest  in 

multimedia applications. Among the multitude of multimedia data, video is the 

most popular among the users, but unluckily, it has also the most stringent 

constraints in term of minimum bandwidth and minimum delay and delay jitter. 

  Because of the growth of video popularity, a lot of video on demand and 

video streaming live applications has been developed. In this scenario, the 
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network layer represents the crucial point to allow the development of these 

services: some particular protocols able to support the broadcast of a video 

content from one source to many recipients are necessary. 

As already shown in the third chapter, the optimal solution in this sense is 

represented by SSM [8] systems, above all with regards to inter-domain routing. 

Because of their expensive costs (for example, the routing requires a big amount 

of traffic and a large space in router memories, too), the research community is  

oriented towards the Peer-to-peer world. 

P2p networks, as the well-known UUsee[20] and PPlive[19], offer a 

decentralized environment with a lot of advantages, such as the possibility to 

instantiate direct communications between the end-systems, without passing 

through any central server. It causes a substantial reduction of the control traffic, 

as a consequence a noteworthy reduction of costs. 

At the same time, the using of flooding method to deliver packets to the peers, 

could generate a generalized increasing of the data traffic in the system [6].  

Also the high dynamicity, caused by the uncontrollable joining and leaving of 

peers to/from the network, represents a tricky issue, because it makes difficult 

controlling the QoS parameters at any time. Some studies have revealed that, 

during peak hours, the video streaming quality degrades as the peers quantity 

increases: this curious behavior brings additional problems in QoS parameters 

supporting [10]. 

Moreover, the majority of the peers have access to the network through an 

asymmetrical connection, so their upload bandwidth is quite narrow: actually, 

their contribution to the total available bandwidth on the system is not so sizeable. 

 For all these reasons, several times p2p networks are unable to guarantee a 

reasonable viewing experience to the all peers in the same breath [11]. 

In order to move around this hurdle, alternative network layer solutions are 

developing. To this aim, CoreCast [10] has been implemented.  

It is a new efficient architecture working on top of the LISP, that is considered 

the most reliable instance of the Loc/ID split [22]. According to several studies 
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done in IETF (Internet Engineering Task Force) in the matter of improving 

network’s scalability and routing protocol efficiency, the Loc/ID split is the best 

way to handle the unsatisfactory situation in which multimedia services and 

applications are. Because of this, LISP is considered the finest solution to hold 

down the worrying growth of DFZ routing tables. 

With the awareness of LISP’s potentialities, CoreCast aims to reduce the 

inter-domain traffic, in order to get less costs than multicast and existing p2p 

solutions. So, CoreCast is able to offer a reliable live streaming service, 

guaranteeing the respect of some QoS parameters, too. Avoiding inter domain 

bandwidth consumption, it is also ISP-friendly, because there is no traffic 

between peers belonging to different ISPs. This feature is well appreciated by the 

ISPs, because the large amount of traffic generated by p2p application (especially 

file-sharing ones) can be drastically reduced in this manner. Furthermore, Content 

Distribution Networks and ISPs could easy establish SLAs (Service Layer 

Agreements), because in this scenario they have not to take into account inter-

domain connections. 

 

 

4.4 CoreCast’s functioning 
 

CoreCast is a push-based architecture mounted on top of the LISP. Just 

few changes to the LISP are required in order to implement it (but it is not a 

problem, because LISP is not standardized yet, it is still in development phase). 

To allow the Loc/Id split brought by LISP, CoreCast manages two different types 

of packet [10]: 

• Payload Packet (figure 4.5), containing the payload, its identifier (hash) 

and its length; 
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Fig. 4.5: Structure of Payload Packet 

 

• Header Packet (figure 4.6), containing the IP header and the Corecast 

PDU. The latter is constituted by the destination EID and the hash of the 

payload that should be sent to the client. 

 

Fig. 4.6: Structure of the Header Packet 

 

Anyhow, all LISP devices are maintained in CoreCast implementation, because 

they are fundamental to obtain the wanted improvements. 

 The figure 4.7 shows an example of a small CoreCast architecture with 3 

distinct ASes (Autonomous Systems), and 8 clients distributed in them. 
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Fig. 4.7:Example of CoreCast architecture [10] 

 

The scenario is constituted by a source S that wants to send some packets to k 

users, located in j different ASes (it could be an IPTV service, or a video live 

streaming communication, etc…). 

The source S just sends the content once to its ITR, instead sending it k times, as it 

would happen in a unicast network. This is a great advantage, because the source 

overload and the eventuality of network congestion are avoided. 

Along with the video content, the source sends a list of ETRs, too, defining the 

destination ASes. Later, each ETR will send the packet by a simple unicast 

transmission (or by IP multicasting ,in alternative: the choice depends from each 

AS) to the recipients inside its AS. 

 In order to allow the CoreCast’s functioning, it’s necessary keeping some 

memory structures into the source, the ITR and the ETRs. 

Into the source, an array called ChanDstList (Channel Destination List) is 

stored, containing the list of the EIDs that are currently receiving that stream. 
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When a client connects to the stream, its EID is appending to the ChanDstList; 

on the contrary when a client switches channel or simply leaves the network, its 

EID is deleted from the ChanDstList. 

The ITR and the ETRs have two data structures stored inside them (figure 4.8): 

 
Fig. 4.8: Interaction between PayloadBuffer and ServedRLOC1 

 

• the PayloadBuffer, containing the list of the current payload packets of 

each stream. This buffer is indexed by the hash of the payload packets, so 

a certain payload is univocally indentified by the couple hash(payload). 

To save memory, actually only one payload per stream at a time is held; 

• the ServedRLOC, a vector holding a list of RLOCs. Every element of the 

payloadBuffer points to a ServedRLOC. So, each ServedRLOC 

represents the RLOCs that have already received the payload, referring to 

the one that is pointing the current ServedLOC. 

 

These memory structure does not represent a high cost in terms of memory 

spaces, because few Mb are enough to contain all of these arrays (for more details 

see in [10]). 
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As already pointed, for each channel corresponds an EID, besides an EID 

space is reserved to the CoreCast streams into the local domain. For each of these 

channel, the source divides the multimedia data into chunks, then, for each chunk, 

S executes the following operations: 

1. sending the first packet with the payload (payload packet of LISP); 

2. setting the destination address of the EID, relative to the reserved channel; 

3. after the first sending, the source repeats this procedure following its 

ChanDstList. So a header packet is sent to every EID of the 

ChanDstList. 

 

This process is periodically iterated, according to the bandwidth requested for the 

stream (further on, this aspect will be take into account to make calculus about 

some characteristics of the CoreCast protocol) 

Afterwards, the packet reaches the source ITR, that represents the first 

demultiplexer point of the network. The ITR makes some checks on the packet, in 

order to understand toward which ASes is it addressed: 

1. the identifying of the channel, using the reserved destination EID 

contained into the header IP of the payload packet; 

2. the extracting of the EID and the correspondent hash from the CoreCast 

header; 

3. the EID-to-RLOC mapping, a function of the LISP that allows the ITR 

looking up to the RLOC associated to the client EID: using the extracted 

hash from the CoreCast header, the ITR checks the payloadBuffer: 

a. if the correspondent payload is found, the ITR checks into the 

pointed ServedRLOC, in order to find the relative RLOC. If there 

is the RLOC, it means that the payload has been already received 

by the ETR. So the ITR forwards the header to the ETR through a 

simple LISP encapsulation; 

b. otherwise, the payload is created before sending the header to the 

ETR. 
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Finally, the packet reaches the ETRs, representing the second 

demultiplexer point of the network. They work like an ITR, but with a difference: 

in output, rather than sending the headers using a LISP encapsulation (like ITR 

does), the ETRs expand the header, obtaining normal payload packets. Then, each 

ETR sends the extracted payloads to the end-systems belonging to its AS 

(receiving hosts) through unicast connections (also IP multicasting can be used, it 

is an efficient solution in intra-domain scenarios). Data payloads are retrieved 

from the payloadBuffer, that is kept up to date by the ETRs, through operations 

of adding and removing payloads to/from it. 

 As mentioned before, there exist an upper limit to the number of clients 

that CoreCast can support. This threshold is bound with the requested bandwidth 

by the stream, and it is a function of the following parameters: 

- C = line rate [bps] 

- T = time interval between two payload packets [s] 

- P = payload size [4] 

- H = header packet size [4] 

- BW = requested bandwidth per steam [bps] 

 

This limit could be represented by the formula (1): 

BWH
PC

H
TCMaxClientCC ⋅

⋅
=

⋅
⋅

≅
8                    (1) 

The comparison between the formula (1) and the formula inherent to the 

maximum number of the clients in a unicast transmission (formula (2)) 

 BW
CMaxClientUC =

                                                 (2) 
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reveals that the accuracy of CoreCast protocol depends from the ratio H
P

, i.e. the 

ratio between the payload size and the header size. As this ratio increases, the 

CoreCast gain in term of maximum number of supportable clients grows, too. 

 Furthermore, the efficiency of CoreCast depends also from the ratio j
k

 

(referring to the figure 4.7), that represents the distribution of the clients among 

ASes. If this ratio is high, it means that the clients are spread among a small 

number of ASes: this is a good scenario for CoreCast, because when the ASes are 

not a lot, an impressive bandwidth saving could be obtained. 

Strongly connected with this aspect, the differentiation between intra-

domain (connections between ETRs and end-systems) and inter-domain traffic 

(connections between the ITR and the ETRS) assumes a crucial importance in 

CoreCast’s efficiency. The aim, of course, is the minimization of the latter, 

because it represent a very high cost. 

The evaluation of the impact of both on the total amount of traffic, can be made 

using the following two formulas: 

( ) ( )( )kCCHLISPjCCPLISP
T

BW er ⋅++⋅+=
1

int      (3) 

 

( )( )kDATAIP
T

BW ra ⋅+=
1

int                                                    (4) 

 

where LISP and IP denote respectively the LISP header size and IP header size, 

CCP and CCH represent respectively the CoreCast PDU size for a payload packet 

and a header packet, finally DATA is the size of a multimedia chunk. 

As formula (3) shows, in this contest the parameters j and k play also an important 

role. 



 
 

Chapter 4                                                                 LISP and Corecast transmission 
 

71 
 

Analysis and evaluations [10] about an implementation of CoreCast on a 

Linux kernel, reveal that it comports an increase of CPU usage of about 52% on 

average, compared with a normal unicast transmission. Anyway, this increase 

should not be a limit for the router hardware and software, because several 

optimizations, in order to support the new operations introduced by CoreCast, can 

be easily implemented. 

It is also necessary taking into account that this CoreCast implementation is not 

optimized to work on a Linux kernel as the unicast one is (it has already been fit 

since several years). This consideration ends to the belief that the processing 

overhead of the CoreCast is not a risk for router’s performance (more details 

about these researches can be found in [10]). 

In conclusion, CoreCast can be considered a simple protocol requiring 

small memory costs and no reconfiguration of routers; besides it is ISP-friendly, 

because its main aim is the minimization of inter-domain traffic. 

Thanks to these aspects, CoreCast allows ISPs and Content Distribution Network 

to relate independent SLAs, regardless of the inter-domain connections. 

Note that CoreCast does not take into account the operations of AAA 

(Authentication, Authorization, and Accounting), as a matter of fact the source 

can manage this operations at application layer, freely choosing a framework. 

This is due to the fact that CoreCast does not operate at application layer, like the 

majority of the p2p live streaming services, creating a p2p overlay. On the 

contrary, it works at network layer on top of the LISP, taking advantage of the 

Loc/ID split [22]. This characteristic is the most strong point of CoreCast, because 

gives it the potentiality to be adopted in the largest live streaming frameworks of 

the Internet. 
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CHAPTER 5 

Work environment and 

analysis’ bases 
 

 

 The fifth chapter deals with the instruments and the selected methods used 

to realize this thesis. It consists of a series of analysis based on a big amount of 

data traces captured using Wireshark. It is the well-known sniffer program, used 

in a lot of industries and universities in the world. 

The aim of this work is studying and understanding the potentialities of the 

CoreCast protocol considering various points of view. The process of evaluation 

consists in the extraction of some relevant data and ratios in order to compare 

CoreCast performance with a normal p2p network for live video streaming. 

The traces have been captured on the occasion of the Michael Jackson funerals 

(Staples Center, July 7th - 2009), a very popular event in all over the world. 

Several tens of millions of people went on line that day to watch the event 

via TV and via Internet: CNN, Facebook, and the main p2p platforms, such as 

PPlive[19] and UUSee[20], transmitted the event for about four hours. 

Because of the huge volume of users, as a consequence of data too, it is 

reasonable thinking that the estimations obtained in this case should be actually 

representative, and should be considered as one a realistic scenario for testing 

CoreCast. 
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This event has involved a large volume of data, for this reason it is supposed that 

these researches acquire a relevant meaning. 

 The experiments done during this work regards the traffic sniffing from 

two different networks at the same time, one in Spain and the other in Romania. 

Even if the true duration of the event has taken 2 h, the traces captured regard a 

total interval of 3 h and 41 minutes: this choice aims to cover also the time lack of 

the preparations to the funerals and the final interviews (also these parts could be 

interesting for the majority of the users). The number of the users is different in 

the two networks, there are 3292 ones in Spanish scenario and 24463 ones in 

Romanian scenario. The studied traces bring several information, such as the 

source and the destination IP address, the transport-layer protocol name, the 

payload size, the timestamp, the source and destination port number, etc… 

 

  

5.1 The general meaning of the analysis 
 

The present work is based on several analysis realized in many steps. The 

point of beginning of everything are the traces. 

These traces regard the Michael Jackson funerals, precisely they concern the 

video live streaming of the event on the PPlive network [19], that, as mentioned 

in the second chapter, is one of the biggest p2p live streaming network of the 

world. 

The event has been caught from two different points of the network: the first point 

of the survey was located at the Universitat Politècnica de Catalunya (UPC) of 

Barcelona - Spain, the second one was located at the Universitatea Tehnica Cluj 

Napoca (UTCN) – Romania. 

Through the collaboration of both universities it has been possible collecting a 

huge amount of data, in the form of data traces of PPlive traffic sniffing by the 
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Wireshark. The collecting of the traces has been done in the same breath from 

Spain and Romania during an interval time of about four hours. 

The following block datagram (figure 5.1) represents the logical and 

chronological operations done in order to get our results: 

 
Fig. 5.1: Block diagram representing the logical and chronological data processing 

 

As the figure 5.1 shows, the work is fundamentally composed of three steps: 

1. data extracting from the traces, i.e. the choosing of the fields of interest for 

the particular analysis that has been executed in that moment. In this phase 

the used instruments are Wireshark and some Linux shell commands. 

2. data managing  and elaboration of relevant information, using Perl scripts. 

3. result representation and interpretation using M-file of MATLAB, in 

order to produce some representative diagrams. 

 



 
 

Chapter 5                                                      Work environment and analysis’ bases 

75 
 

During the following paragraphs each of these phases will be explained with more 

details. 

 

 

5.2 Data extracting  
 

This first step of the work aims to catch the data traces from the PPlive 

network, then to examine them using Wireshark. Through this software, the 

fields and the kinds of data of interest can be selected from time to time and 

forwarded in output. 

Wireshark project started in 1998 and today represents one of the world main 

sniffing and analyzing network protocol. It is frequently used in many industries, 

universities and educational institutes [23]. 

Wireshark runs on almost all UNIX platforms and on the majority of the 

Windows platforms, too. In order to be executed, it requires GTK+, GLib, libpcap 

and some others libraries [24]. It is an open source software, released under GNU 

GPL (General Public License). During the realization of the present researches, 

Wireshark in version 1.2.0 on Debian GNU/Linux has been used. 
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Fig. 5.2: A screenshot of Wireshark  work environment 

 

Looking at the figure 5.2 helps to have an idea of the information that the 

analyzed traces bring: 

- frame information: absolute arrival time (date and hour), time delta from 

previous captured and displayed frame (in seconds), timestamp (i.e. the 

time since reference or first frame, in seconds), frame number, frame 

length; 

- network protocol information: protocol name (IPv4, IPv6, ICMP, IGMP, 

etc…), source and destination IP address, protocol version, header length, 

DS field, total length, identification (hexadecimal number), flags, fragment 

offset, TTL, header checksum; 

- transport protocol information: protocol name (UDP, TCP, DCCP, etc…), 

source and port number, sequence number, acknowledgment number, 

header length, flags, window size, checksum, payload size (in byte); 
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The extraction of the information is carried out through some shell 

commands of TShark, the console-based version of Wireshark. Launching few 

Linux shell commands, it is easy extracting the relevant data from the traces of 

interest from time to time. Below there is the general structure of a TShark 

command launched from a Linux shell, in order to get some information from the 

traces: 

 

tshark -r INPUT FILE -Tfields -e FIELD 1 -e FIELD 2 -e ... –e 

FIELD N > OUTPUT FILE 

 

Here tshark simply indicates that what follows has to been interpreted as a 

command of TShark; -r is the indicator of the input file in pcap format, i.e. the 

format of the traces captured by Wireshark; -e precedes a field specification. 

Every field indicates a particular part of a trace, for example the IP source 

address, or the TCP port number, or the timestamp, etc… In the end, the symbol 

of >, followed by the output file name, serves to redirect the output of the 

command towards the text file indicated (it could be existent or not, in the former 

case the precedent content of the file will be subscribed, in the latter case the file 

will be created at that moment). 

The redirection of the output is a very useful function for this work, because it 

allows the immediate creation of the wanted format, without others intermediate 

steps. 

For instance the follow command: 

 
tshark -r pplive.florin.tcp.pcap  -Tfields -e ip.src -e 

ip.dst -e tcp.srcport -e tcp.dstport -e ip.len -e 

frame.time_relative > romania_T_tcp.txt 

 

just takes in input the file pplive.florin.tcp.pcap, then extracts from it the 

following fields (in order): IP source address, IP destination address, TCP source 
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port number, TCP destination port number, IP payload length and timestamp of 

the traces. Finally, the result is written into the text file romania_T_tcp.txt. 

 

 

5.3 Data managing  
 

 The data managing is the second phase of the work process, and it regards 

the conversion of the text file obtained by Wireshark, in another text file 

containing the elaboration of these data. The aim is getting new information 

through the aggregation of the available data, in order to make considerations 

about the efficiency of the CoreCast protocol from several points of view. 

Actually, this is the core part of the work, because the analysis and the 

calculations that will be made in the final third phase strictly depend from this 

step. So, in order to manage the data, it is necessary to use a software application 

able in managing text file, because both input and output file are textual (referring 

to figure 5.1). 

For this reason the choice was the Perl (Practical Extraction and Report 

Language), one of the most popular programming language working with strings 

and text structures in general. The simplest operations that can be done in Perl are 

the pattern matching and the pattern substitution [25]. 

The selected platform is Active Perl version 5.10.1 mounted on a Windows XP 

machine, and Perl Express version 2.5 (figure 5.3) has been chosen as Integrated 

Development Environment (IDE). 
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Fig. 5.3: A screenshot of the Perl Express 2.5 work environment 

 

The Perl language is very easy, for instance, to look for a particular value 

inside a text file, or to make aggregations of some kind of field. One of the most 

useful function of Perl is the conversion of a text row in a data structure.  

Three or four lines of text code are enough in order to implement this conversion: 

the input text file is opened, then the split function “cuts” the current text row 

(managed as a string), obtaining as many as wanted variables. 

The following extract of coding gives an example of implementation of the split 

operation: 
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open(IN,"< file path/file_name.txt"); 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my 

$byte)=split; 

[…] 

} 

close(IN); 

 

In other words, every row of the text file called file_name.txt is cut in order to 

obtain the variables $s_ip, $d_ip, $s_port, $d_port and $byte. The 

chomp command just deletes all $INPUT_RECORD_SEPARATOR (spaces) 

from the string in input. 

The split is iterated through a cycle on the text input file implemented by the 

instruction while(<IN>). 

 Another very useful feature of Perl language is the hash data structure. It 

is the third data type in Perl, after scalars and arrays, and it consists of an 

associative array. It means that the elements belonging to a hash can be pointed 

through an arbitrary scalar value, such as number or string [25]. 

As each different native data types in Perl, the hash has the symbol of % as 

special starting character that identifies the type of variable (scalar has $ and array 

has @). 

The following lines of Perl coding gives an example of hash use: 

 
1 %tcp_s_h=(); 

2 open(IN, ,"< file path/file_name.txt"); 

3 while(<IN>) { 

4     chomp; 

5  (my $ip, my $s_port, my $d_port) = split; 

6  $tcp_s_h{$s_port}++; 

7 } 

8 close(IN); 
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The hash %tcp_s_h is instantiated as empty at line 1, then the input text 

file file_name.txt is opened and split (like in the first example). The variable 

$s_port becomes an element of the hash %tcp_s_h through the instruction at 

line 6. 

Using hash and array data conjunctly, multidimensional data structure can be 

implemented, too. 

 

 

5.4 Data representation and results interpretation 
 

 The last phase of the work process concerns the representation of the 

results through graphs. Converting data in graphical form makes their 

interpretation and understanding more intuitive and immediate. 

Data extracted from the traces and elaborated by the Perl scripts are synthesized in 

a text file, that represents the ingress point of the present process of conversion 

(referring to figure 5.1). As mentioned before, the output of the process will be the 

representation of the data in a graphical form. 

The instrument used in order to realize this reinterpretation is the popular 

MATLAB (Matrix Laboratory) version 7.5.0 (R2007b), a high level technical 

computing language, widely used in scientific and industries areas. 

Its environment (shown in figure 5.4) lets users solve technical and mathematical 

problems faster than traditional programming languages [26]. 
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Fig. 5.4: A screenshot of the MATLAB 7.5.0 (R2007b) work environment 

 

MATLAB provides a very large variety of applications, such as 

communications, test and measurement, control design, image processing, 

managing code, mathematical function for algebra, statistics, Fourier analysis, 

filtering and numerical integration, tools for building custom graphical user 

interfaces, and so on. 

Besides, using several toolboxes, the number of applications increases much 

more: there are some special additional modules implemented to resolve special 

classes of scientific and mathematical problems. Another strength point of 

MATLAB is the possibility to integrate its code with others languages. 

Among this multitude of application that MATLAB offers, the one used in 

this work concerns the realization of graphics functions. The intent is the 

representation of the data derived from the elaboration of the PPlive traces. 

In details, M-files have been used in order to decide all the characteristics that 

graphics should have from time to time. The M-files are a very powerful 
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instrument, because they make possible collecting several instructions and 

executing all of them in one time. Actually the M-file is a script (but there is 

another type working as a function), executable simply keying its name (without 

its extension .m): 

 
>> M-file_name 
 

Just one condition: the M-file must be saved into the Current Directory of 

MATLAB, otherwise it cannot run. 

 Since all M-files realized into this work concern the rendering of some 

graphs, the plot function has been used in each of them. The following is an 

example of how the plot function works (these instructions belong to 

minutes.m,  one of the M-files used during the present work): 

 
1 x = (spain_minutes(:,1)); 
2 y = (spain_minutes(:,2)); 
3 p = plot(x,y); 

 

The input parameter of the plot function are x and y, two vectors that represent 

respectively the x and y axis. The output of the function is saved into the variable 

p, in order to allow additional operations to personalize the graph rendering. 
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CHAPTER 6 

Analyses and results 
 

 

 This last chapter is the core of all the thesis, as a matter of a fact it contains 

all analyses and experiments made during the realization of the present work. 

Basically, it consists of six parts, each of which deals with a single analysis, 

studied in every aspect. In each part, it will be retraced the entire path (referring to 

figure 5.1), from the extraction of the data to the realization of the results. Finally 

the obtained results are commented and evaluated. 

  As mentioned in the previous chapter, all analysis derive from the 

elaboration of the traces relative to Michael Jackson funeral. The traffic has been 

captured at the Universitat Politècnica de Catalunya (UPC) of Barcelona and at 

the Universitatea Tehnica Cluj Napoca (UTCN) at the same time. 

The traces are produced by PPlive, one of the most popular p2p video live 

streaming platform in the Internet. 

Then, the traces have been saved into two .pcap files, of about 750 KB (Spain 

traces) and 1.5 GB (Romania traces). The different sizes of the traces are due to 

the fact that in Spanish network there are 3292 peers, instead in Romanias 

network there are 24463 peers (more than seven times bigger than in Spanish 

network). 

In order to simplify our work, these two files have been previously divided 

into two parts, using the filtering function of Wireshark. The division regards the 

separation between UDP traffic and TCP traffic. In the end, four files have been 
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obtained, two of which representing UDP and TCP traces of Spain caught traffic, 

and other two representing UDP and TCP traces of Romania caught traffic. 

This division makes easier the data managing, because it simplifies the 

characterization in details of the traffic, and, as a consequence, the analyses of all 

its features and details. 

All presented analyses follow, in such a way, several experiments 

conducted by Thomas Silverston [2] and others researchers. Their purpose was 

characterizing and understanding the traffic properties and the peer behavior of a 

peer-to-peer community during a world-scale event. 

These experiments are based on the traffic captured on the occasion of 

2006 FIFA World Cup. The traces have been captured from June 9th to July 9th 

from various kind of P2P IPTV applications (PPlive [19], PPStream, Sopcast, 

TVants). The capturing of the traces has taken a long time (one month), because 

the researchers thought that a long period of observation would have been more 

representative of the actual characteristic of the network and of the users, too. 

 

 

6.1 Traffic analysis 
 

Our first work aims to classify the traffic captured by Wireshark, in order 

to understand the nature of the traffic on the p2p network. 

Since our first purpose is to evaluate the performance of CoreCast protocol [10], 

we are interested above all in knowing how much control traffic is there on the 

network, and then in trying to reduce it. For this reason, as already pointed, the 

p2p IPTV application chosen is PPlive [19]: this choice is justified by the 

experiments of Silverston, that reveal that PPlive produces less control traffic 

among the observed networks [2]. 
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 In order to separate signaling traffic and video traffic, it is necessary 

relying on a heuristic algorithm, because the protocol adopted from PPlive 

application is not open.  

The first step of the algorithm consists in the individualization of the sessions. A 

session is defined as a series of packets with the same IP source address, IP 

destination address, source port number, destination port number and protocol 

[2]. After that, the algorithm has to decide if the individualized session is a 

signaling session or a data session. 

As described in the precedent chapter, the first phase is the data extracting. 

So, in order to get the data necessary to individualize the sessions, the structure of 

the TShark commands is the following: 
 

tshark -r pplive.tcp.pcap  -Tfields -e ip.src -e ip.dst -e 

tcp.srcport -e tcp.dstport -e ip.len > TCP_only.txt 
 

Among the commands used, just the input and the output files changes (there are 

four commands because there are four traces in input; for simplicity,  from now 

on it will be referred just to the structure of the all one, regardless of the input and 

the output files). 

Referring to the explanation given in the fifth chapter, in this command line it is 

possible to find all the five parameters necessary to individualize a session. 

After the data extraction, we can pass to the data managing phase. Here the 

separation between the control and data traffic is implemented. In order to 

implement this division, it has been considered that in general data and control 

traffic have different characteristics: 

- Payload Size (PS), because data packets are much bigger than control 

ones; 

- Delay Constraints, more stringent for data traffic. In order to evaluate this 

limits, it has been taking on account as parameter the Inter Packet Time 

(IPT), i.e. the time interval between two packets belonging to the same 

session . 
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It is supposed that video sessions are composed by big packets, transmitted in 

regular and short time intervals; on the contrary control session should be 

composed by small packets transmitted less frequently, comparing with data ones. 

In other words, video sessions should have big PS and short IPT, vice versa 

control session should have smaller PS and longer IPT than data chunks. 

Based on this reasoning, the heuristic algorithm works counting the number of 

packets (hence this parameter will be called n), with a payload bigger than 1200 

bytes. So, if n ≥ 10, the session is considered a data one, otherwise it will be 

considered a supposed control one. Note that each session is treated like a 

“monolith”, in the sense that it can be considered either the whole data session or 

the whole control session. Furthermore, some direct analysis on the traces, have 

revealed that the limit can be decreased to 1000 bytes (hence, this one will be the 

threshold taken into account for the following experiments). 

 Using these information deriving from the previous mentioned 

experiments [2], the traces have been processed by a Perl script, in order to obtain 

an aggregation of the traffic according to three distinctive features: 

1. UDP traffic and TCP traffic, obtained through the previous division of the 

original trace file in an UDP file and a TCP file; 

2. data traffic and control traffic, based on heuristic algorithm explained; 

3. upload traffic and download traffic, obtained by comparison with the fix IP 

address of the capture point (IP address of UPC for spanish traces and IP 

address of UTCN for romanian traces). 

 

The Perl script implementing this function, works according to the logic 

represented in figure 6.1: 
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Fig. 6.1: Block diagram representing the logical process of the first Perl script 

 

The algorithm is composed by two main phases. The session creation, during 

which the data structure (four-dimensional) thought to contain the sessions is 

instantiated during the reading of the input file row by row. Then, the session 

division phase deals with the separation of the data sessions and control sessions. 

In the end, the results are saved into 12 text files, one for each graph that will be 

drown. (later it will be explained why the graphs are 12). 

After this process, it is possible to recognize 8 different categories of traffic: 

• video download TCP traffic 

• video download UDP traffic 

• video upload TCP traffic 
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• video upload UDP traffic 

• control download TCP traffic 

• control download UDP traffic 

• control upload TCP traffic 

• control upload UDP traffic 

 

The last phase of the work is the representation of the results. A proper MATLAB 

M-file has been constructed: it receives in input the text file from the Perl script, 

then it returns in output 12 graphs: 

- 8 of these refers to the traffic category individualized through the Perl 

script; 

- the other 4 arise from the aggregation of data and control traffic, so they 

represent the total upload TCP traffic, the total download TCP traffic, the 

total upload UDP traffic and the total download UDP traffic. 

 

Each of these 12 graphs charts the trend of the CDF (Cumulative Distribution 

Function) of each node (identified by its IP address) of Spain and Romania traces 

(two lines) for the particular category of traffic which it refers to. Actually, each 

of this diagram has been saved in five different formats ( .pdf, .png, .fig, .eps, 

.jpg), in order to allow eventual modifications and uses in different environments. 

The following (table 6.1) is a summary of the analyzed traces, divided according 

to the characteristics of the traffic they represent: 
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Traffic kind 
Number of 

sessions 
Total payload 

 
 

S 
P 
A 
I 
N 
 

video download TCP traffic 
video download UDP traffic 
video upload TCP traffic 
video upload UDP traffic 
control download TCP traffic 
control download UDP traffic 
control upload TCP traffic 
control upload UDP traffic 

   78 
   46 
 139 
 173 
     0 
     0 
     3 
3170 

632926384
29244528
2289918

17534038
0
0

8075
8301392

 
R 
O 
M 
A 
N 
I 
A 

video download TCP traffic 
video download UDP traffic 
video upload TCP traffic 
video upload UDP traffic 
control download TCP traffic 
control download UDP traffic 
control upload TCP traffic 
control upload UDP traffic 

  30 
  34 
 310 
 308 
 634 
1008 

            21071 
            22823 

47929668
8344177
1013349
1302585

464062616
311543907
32567799
42198363

Table. 6.1: summary of traces characteristics 

 

The table gives information about the number of sessions, individualized using the 

heuristic algorithm, and the total payload, obtained just summing the payloads of 

every session of the same kind.  

Following, there are the graphs relative to every class of data, as reported 

in the table 6.1. 
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Fig. 6.2: CDF representations of spanish and romanian TCP video download traffic 

 
Fig. 6.3: CDF representations of spanish and romanian UDP video download traffic 
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Fig. 6.4: CDF representations of spanish and romanian TCP video upload traffic 

 
Fig. 6.5: CDF representations of spanish and romanian UDP video upload traffic 



 
 

Chapter 6                                                                                    Analysis and results 

93 
 

These results show that there is no UDP video traffic in Spain traces (figures 6.3 

and 6.5). This is probably due to the presence of the firewall, as previously 

hypothesized.  

 
Fig. 6.6: CDF representations of spanish and romanian TCP control download traffic 
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Fig. 6.7: CDF representations of spanish and romanian UDP control download traffic 

 
Fig. 6.8: CDF representations of spanish and romanian TCP control upload traffic 
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Fig. 6.9: CDF representations of spanish and romanian UDP control upload traffic 

 

As a confirmation of this theory, in the figures 6.7 and 6.9 some UDP control 

traffic appears. Analyzing these graphs, too, is evident that the control TCP traffic 

(lower limit 98.5 %) is less distributed than the control UDP one (lower limit 18.5 

%): this percentages also confirm the idea that TCP traffic is almost all video 

type, for this reason it is not so sparse among the peers. Maybe UDP control 

packets have a payload limited to a certain threshold. 

As a conclusion of this experiment, below there are the graphs about total traffic: 
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Fig. 6.10: CDF representations of spanish and romanian TCP total download traffic 

 
Fig. 6.11: CDF representations of spanish and romanian UDP total download traffic 
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Fig. 6.12: CDF representations of spanish and romanian TCP total upload traffic 

 
Fig. 6.13: CDF representations of spanish and romanian UDP total upload traffic 
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 Viewing this summarizing four graphs (figures 6.10 - 6.11 - 6.12 - 6.13) it 

can be said that generally the Romania traffic converges to 1 more quickly than 

Spain traffic: it means that the traffic is distributed among more peers in Romania 

than it is in Spain. Furthermore,  the download traffic in Spain (figures 6.10 and 

6.11) is bigger than the download traffic in Romania (above all UDP); on the 

contrary the upload traffic is larger in Romania than in Spain. 

As shown, the download traffic is created from the interactions among the peers, 

instead the upload traffic regards the interactions between the capture point and 

the peers. A possible explanation to this phenomena could be the presence of a 

firewall into the Spain scenario. 

 This hypothesis is born out also by the statement of fact that there is more 

control traffic in download than in upload (figures 6.6 - 6.7 - 6.8 - 6.9): it means 

that control traffic doesn’t concern the traffic between peers, but only the direct 

connections with the capture point. 

 Finally, confronting the volume of UDP and TCP traffic in Romania and 

in Spain scenarios, it has been resulted that there is prevalence of TCP traffic in 

Spain and prevalence of UDP traffic in Romania. This can be due to the very high 

quantity of peers (more than eight times bigger than the number of peers in the 

Spain network) that produce more control traffic among themselves (it is UDP, as 

already pointed). 

 

 

6.2 Download/upload balance 
 

Continuing with the reasoning previously described, in this section the 

theme of download/upload balance is faced. The term balance is defined as the 

proportion between the volume of the download traffic and the volume of upload 

traffic. This ratio is very useful in order to reveal if the peers use more their 

download bandwidth, taking the video content directly from the capture point (or 
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in alternatively, from other peers), than their upload bandwidth, sharing their 

resource in order to let other peers download from them some video chunks. 

This experiment would not have sense if the peers used an asymmetrical 

bandwidth, but in our case it is significant, because the capture point (both in 

Romania and in Spain) has a symmetrical bandwidth in order to obtain more 

equal results. The data extracting and the data managing steps have been skipped, 

because all necessary data are already available from the traffic analysis showed 

in paragraph 6.1. 

 So, only the result representation phase is necessary, as a consequence a 

second M-file has been written. The input data of this one are the same of the 

previous M-file, but the output consists of 12 graphs in total: 6 for the Romanian 

traces and 6 for the Spanish ones. This time, Romania and Spain data are drown 

separately, because seeing this kind of representation of both in just one graph 

could be not very intelligible. Like in all experiments, every graph has been saved 

in five different formats. 

 
Fig. 6.14: Download/upload balance representation of TCP video traffic in Spain 
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Fig. 6.15: Download/upload balance representation of TCP video traffic in Romania 

 
Fig. 6.16: Download/upload balance representation of UDP video traffic in Spain 
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Fig. 6.17: Download/upload balance representation of UDP video traffic in Romania 

 

With referring to the figures 6.14 – 6.15 – 6.15 – 6.17, the axis represents 

the number of bytes received (y axis) and transmitted (x axis). Every point of the 

diagram corresponds to a peer. A bisector line represents a situation of perfect 

balancing between upload and download traffic. Of course, it is just an ideal 

situation, as a matter of a fact there are a lot of points quite distant from this line: 

if the point is upper than the line, it means that it receives more data than it sends, 

vice versa if the point is under the line. The plot has logarithmic scale, because the 

considered values cover multiple orders of magnitude.  

As to TCP video traffic (figures 6.14 and 6.15), in both networks the 

download one is more relevant if compared to the upload one. The situation 

changes analyzing the UDP video traffic graphs: into the graph representing 

Romania network, (figure 6.17) all points are quite close to the bisector line; it 

means that the situation is more balanced; instead the UDP data traffic graph 

referred to the Spain network (figure 6.16) is empty, there are no points . This is 
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because the volume of UDP video traffic in upload (with reference to the figures 

6.3 and 6.5) and in download (with reference to the figures 6.2 and 6.4) is too low 

to be represented with a logarithmic scale like the one used in these graphs. 

Thus, it can be deduced that TCP video traffic is more concentrated into 

the download side (upper than the bisector line), with the meaning that peers do 

not use a large part of their upload bandwidth, although they have the same 

capacity than they have in downloading. The situation is more balanced in UDP 

video traffic, maybe because UDP protocol is not very used to transmit data 

packets (and this consideration can also explain the situation of the figure 6.16). 

 The control traffic situation in Spain and Romania networks is represented 

in the following four figures 6.18 – 6.19 – 6.20 - 6.21: 

 
Fig. 6.18: Download/upload balance representation of TCP control traffic in Spain 
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Fig. 6.19: Download/upload balance representation of TCP control traffic in Romania 

 
Fig. 6.20: Download/upload balance representation of UDP control traffic in Spain 
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Fig. 6.21: Download/upload balance representation of UDP control traffic in Romania 

 

Analyzing the control traffic, it results evident that the volume of TCP data 

is much lower than the volume of UDP data, with the exception of the figure 6.20, 

that shows almost no point. This graph supports the idea that there is a small 

volume of upload and download UDP traffic into the UPC network, as the figures 

6.7 and 6.9 has already revealed. Since the UDP traffic is almost referred to 

signaling, the lower number of peers in this network can be a plausible cause of 

this phenomena. Anyhow, the general trend of these graphs confirms that there is 

more traffic UDP than TCP in signalizing. The trend is more emphasized 

comparing the figures 6.19 to the figure 6.21: in the latter a large amount of points 

compose a sort of cloud into the graph. Probably, it is caused by the large amount 

of peers of the UTCN network, that, interacting among them, create a big volume 

of control traffic. 

 It is also interesting considering the distribution of the points: the graphs 

referred to the Romania scenario (figures 6.19 and 6.21) have the majority of the 
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points concentrated in the lower-left region of the diagram (sent and received 

payloads smaller than 104 bytes). It just confirms that control payloads are smaller 

than the data payloads, as a matter of a fact the figures 6.15 and 6.17 show a 

concentration of points in the higher-right part of the diagram. This characteristic 

is more accentuated in the Romania scenario because of the bigger amount of 

peers. Finally, the graphs relative to the aggregation of video and control traffic 

are shown in the following figures: 

 
Fig. 6.22: Download/upload balance representation of TCP total traffic in Spain 
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Fig. 6.23: Download/upload balance representation of TCP total traffic in Romania 

 
Fig. 6.24: Download/upload balance representation of UDP total traffic in Spain 
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Fig. 6.25: Download/upload balance representation of UDP total traffic in Romania 

 

With the exception of the figure 6.24, that represents a logic consequence 

derived from the sum of the diagrams of figures 6.16 and 6.20, the general 

distribution of the peers is not very sparse, so the major part of the points is quite 

close to the bisector line. This could mean that the PPlive application tries to 

maintain a certain compensation between download and upload traffic. 

As a conclusion, we can affirm that, generally, the download/upload balance is 

quite good in all the considered scenarios. 
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6.3 Evolution of network population 
 

In this section the network population has been evaluated, considering its 

evolution minute by minute. The focus is on the time, because it could be 

interesting to understand how many users per minute are connected to the peer-to-

peer network watching the video. The number of users, corresponds to the number 

of different IP addresses appeared into the traces. Since in our experiment the 

video content transmitted is the Michael Jackson funerals one, it can be expected 

that a lot of peers have been connecting for the whole duration of the event. 

In order to get these information, it is necessary extracting from the traces 

some data about the time. In this case, the time is represented by the timestamp 

of each trace. The timestamp is defined as the time interval (relative time) elapsed 

since the receiving of the first trace of the video content until the arrival of 

current trace. 

Since during the previous experiments no data time have been involved, in the 

first phase, previous called data extracting, another Linux shell command of 

TShark has been used: 

 
tshark -r pplive.florin.pcap  -Tfields -e ip.src -e ip.dst -

e frame.time_relative > romania_timestamp.txt 

 

Actually the commands are two, that the first extracts the information from 

Spanish network’s traces, the second (shown above) extracts the information from 

Romanian network’s traces. The required fields allowing the processing of data in 

the second phase are the IP source address (ip.src), the IP destination address 

(ip.dst) and the timestamp (frame.time_relative). The former is expressed 

in seconds through a real number with nine decimal digits. 

Finally, the extracted results are redirected to the text file 

romania_timestamp.txt. 
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At this juncture, all data are available and the data managing phase can 

start. It regards three specific operations: the loading of the data in an opportune 

data structure, the IP addresses clustering in every minute and the peers counting 

in every minute. Two Perl script are used, one implementing the first function and 

another implementing the others two functions in cascade. Anyway, the data flow 

logic can be represented by a single block datagram (figure 6.34). 

 
Fig. 6.34: Block diagram representing the logical process of the fourth and the fifth  Perl 

scripts implemented to obtain the evolution of peers population in the network 

minute by minute 

 

The first step of the diagram is constituted by the same function used in the third 

Perl script (with reference to the figure 6.29), so here it is simply reported in a 

single function block (code reusing). Afterward, the timestamp structure is loaded 

without the reference IP address of the capture point. 



 
 

Chapter 6                                                                                    Analysis and results 

110 
 

Now, the control passes to the second Perl script. First, the peers are 

clustered according to the minute of belonging, in order to convert the data from a 

seconds granularity to a minutes granularity. 

This discretization is justified by the fact that the peers joins and leaves the 

network in every second. This dynamicity rends an analysis, considering the 

second as minimum unit of measure not very significant. It is better counting all 

the different IP addresses appeared during a minute of observation. In the end, the 

session printing function is adopted (like in all the other analyses done), in order 

to save the results in two text file (one for each network). 

 Subsequently, the result representation phase starts through the editing of 

an M-file. The data are represented in a single graph, including the Spanish and 

the Romanian results (in order red line and blue line in figure 6.35). 

 
Fig. 6.35: representation of the evolution of network population minute by minute 

 

 The plot is realized using normal scalar scale on both axes. Note that the 

two lines start and end in different minutes, because the streaming of the event 
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covers different time intervals. The Spain traces are captured exactly 58 minutes 

before (since about 18.00 h considering the BST time zone) than the Romania 

traces. Then, since the minute 59 until the minute 203, both networks are active 

(the main part of the Michael Jackson funerals covers this lapse of time, as a 

matter of a fact the event started at 19.00 h in BST). Afterward, since the 204-th 

minute until the 221-th minute, only the Romanian network works. 

The general trend of the two lines is quite regular, but the red line looks 

more linear than the blue one. As expected, because of the large spread between 

the total number of peers of the two networks, the average number of different 

peers counting in every minute into the Romania network (about 1400) is bigger 

than in Spain network (about 200 different peers). 

It’s significant to see that only a low percentage (about 10%) of the peers is active 

at the same time.  

 

 

6.4 Ports’ utilization 
 

Studying the traces, it has been noted some recursive characters, such as 

the amount of packet payloads or the number of port used. The former could be an 

interesting clue in order to understand the peers behavior or to catch some 

particular feature of the network traffic. 

In this experiment, too, the data extraction phase is useless, because the 

information about both UDP and TCP port number, are already present in the 

output files obtained after the first analysis (with reference  to the paragraph 6.2). 

So, it can be left out in this dissertation, passing to the data managing phase. The 

aim of this evaluation is counting the occurrences of each port, i.e. the times a 

certain port is used. The figure 6.29 shows the block datagram scheme of the Perl 

script implemented to achieve the requested counting: 
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Fig. 6.29: Block diagram representing the logical process of the third Perl script 

implemented to obtain the information about ports utilization 

 

 The program is essentially composed of two parts. The first one, the 

reference IP elimination, has as objective the deleting of the IP number of the 

video capture point, that can be the IP address of the UPC machine 

(147.83.130.144)  or of the UTCN machine (192.168.1.101) playing as source 

into the relative networks. This apparently useless operation makes simpler the 

managing of data in the second phase of the program, because it allows the 

managing of the data using just one data structure. Afterwards, in the ports 

counting phase, making a simple control (pattern matching based) on the 

mentioned data structure, the occurrences of every port number has been counted. 

As usual, finally the obtained results are printed (session printing phase). In this 
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case the output consists of four text files, two for the source port counting and two 

for the destination port counting (for Romania and Spain scenarios). 

 Passing to the results representation phase, also in this analysis, a new M-

file has been written: it accepts in input the four text files created by the Perl script 

and returns in output as many graphs. 

 
Fig. 6.30: distribution of TCP source port numbers used in Spain and Romania networks 
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Fig. 6.31: distribution of TCP destination port numbers used in Spain and Romania networks 

 
Fig. 6.32: distribution of UDP source port numbers used in Spain and Romania networks 
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Fig. 6.33: distribution of UDP destination port numbers used in Spain and Romania networks 

  

The plot has logarithmic scale on y-axis because the considered values 

range across several orders of magnitude. The data of Romania and Spain 

scenarios are jointly represented into the same graph. 

At first sight, it can be noted that the destination ports distribution (figures 6.31 

and 6.33) has a more sparse behavior compared with the source ports distribution 

one (figures 6.30 and 6.32). The deepest confront could be done with the number 

of UDP source ports used in Spanish scenario (4 port numbers: 8898, 9224, 

18010, 138) and the number of UDP destination ports used in Romanian 

scenario (22425 different port numbers). 

Analyzing the graphs in details, some relevant data has been discovered: 

- the most used TCP destination ports into the Romanian networks are 

bound into a range from number 1066 to 11529; 

- the most used UDP destination ports into the Romanian networks are 

bound into a range from number 1038 to 10654; 
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- the most used UDP destination ports into the Spanish networks are bound 

into a range from number 1122 to 10048. 

 

These quantitative data, along with the consideration that there are more used 

destination ports in UDP traffic in both networks, let reach the conclusion that, 

generally, the ports are elected randomly. Besides, the Romania situation presents 

always a sparser port numbers distribution than in Spain: this difference can be 

due to the fact that there are more nodes in the Romanian network, so the random 

behavior with which the ports are selected is more marked. 

Even if some results are interesting and curious, the general random nature 

of the ports utilization distribution (as already expected) induces to not consider 

this parameter very indicative and reliable to identify the properties of the PPlive 

network and its traffic. 

 

 

6.5 Inter and intra-domain traffic 
 

 Since the main aim of these researches is the evaluation of the 

performance of CoreCast protocol in reducing the inter-domain traffic, it is 

necessary studying a method to further characterize the captured traces, dividing 

them in intra-domain and inter-domain traces. 

In order to implement this separation, it is necessary knowing the AS 

(Autonomous System), which every IP address belongs to. The belonging to an 

AS is symbolized through an AS number. 

Of course, the AS number of the UPC and the UTCN are already known. In order 

to obtain other nodes AS number, a particular Perl script has been used. It takes in 

input the IP address, and looks for the correspondenting AS number, finally gives 

in output the list of the IP address along with the relative AS number in a two 

columns text file. 
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After obtaining the AS number of all peers, another Perl script is necessary 

to implement the division between the intra-domain and inter-domain traffic, also 

maintaining the characterizations already reached in the first experiment 

(paragraph 6.1). Note that the aim is adding information to the traces, without 

touching the information already got. It means that after this experiment, the 

traffic can be described from four points of view: 

1. TCP and TCP traffic 

2. download and upload traffic 

3. video and control traffic 

4. intra-domain and inter-domain traffic 

 

The algorithm implemented through this second Perl Script is based on the first 

one used, and just another function is added. The following block diagram (in 

figure 6.26) explains in details its functionality: 

 
Fig. 6.26: Block diagram representing the logical process of the second Perl script 

implemented to obtain the division between intra-domain and inter-domain traffic 
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As expected, the block diagram in figure 6.26 is quite similar to the figure 

6.1 one. The session creation and the session printing phases are exactly the same 

in both algorithms (reusing of code). So a single block has been drawn as 

substitution for each of these functions, in order to make the representation more 

compact. The session division phase in this case is composed by three sub-steps: 

the heuristic algorithm, already used in the first script, then the intra/inter-domain 

discrimination algorithm and the shuffle function are added in cascade. 

In the second sub-step, the traffic is divided into intra-domain and inter-

domain parts through a pattern matching method, i.e. comparing the AS number 

of the peer with the AS number of the capture point node (UPC for Spain network 

and UTCN for the Romania network). 

Actually, the script ends in this point, and the results are saved in a text file. Later 

on, another Perl script loads this text file row by row and starts the last part of the 

session division. Since the separation of the Perl script into two different is due 

just to memory limits, and to render the computation faster, from a logical point of 

view it can be considered like a single script. 

In order to run a realistic simulation with intra end inter domain traffic, a 

“realistic” traffic matrix from the real trace has to be constructed. 

Now it is necessary considering that the differentiation between intra-

domain and inter-domain traffic needs another information besides the AS number 

of every peer: the amount of directly exchanged data among the peers.  

Since the available traces only give information concerning the traffic from the 

network point of view , i.e. the capture point one, it is necessary another heuristic 

algorithm in order to obtain the data regarding every peers (latter information 

required). 

Basing our implementation on the hypothesis that the distribution of the traffic is 

equal in each node of the network [2], changing the order of the elements of this 

distribution, the final result does not change . 

In term of Perl code, all data referred to the traffic between the capture point and 

each other peer of the network is contained in an array structure (figure 6.27). 
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 Peer #1 Peer #2 Peer #3 … Peer #i … Peer #N-1 Peer #N 

Capture 

point 
500 65 1020 … 456 … 89 1230 

 

Fig. 6.27: Structure of a vector in Perl code, containing the data relative to the traffic 

exchanged between the capture point and every peer of the network 

 

In figure 6.27 N indicates the number of peers into the network; the numbers into 

the second row of the picture refer to the total number of bytes exchanged 

between the capture point and the i-th peer (where 0< i ≤ N and i is an integer 

number). 

There are 8 vectors like this one into the Perl code, one for each category of 

traffic: 

• TCP upload video vector 

• TCP upload control vector 

• TCP download video vector 

• TCP download control vector 

• UDP upload video vector 

• UDP upload control vector 

• UDP download video vector 

• UDP download control vector 

 

So, during the third sub-step of the session division, every vector is passed in 

input to a shuffle function (fisher_yates_shuffle). This function shuffles 

the vector randomly, then gives in output as results another shuffled vector. Every 

vector is shuffled for N times, so in the end 8 NxN matrixes are obtained (more 

details and the implementation of this function can be found into the appendix A). 

After running the Perl script, the necessary data in order to compose some 

representations are available. From the point of view of inter-domain and intra-

domain traffic, the interest does not concern all of traffic types, but just the TCP 

video upload traffic. The choice is motivated by the fact that this is the only kind 
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of traffic referred to the utilization of the peers bandwidth in transmission of video 

chunks among themselves, without direct download from the capture point. 

The TCP video upload inter-domain traffic is considered the most expensive, for 

this reason it is supposed that reducing it, outstanding bandwidth saving and delay 

decreasing might be obtained. This is also one of the primary aims of CoreCast 

protocol [10]. 

 
Fig. 6.27: CDF of the TCP video upload traffic, divided into intra-domain and inter-

domain traffic for Spain and Romania networks  

 

The graph in figure 6.27 represents the CDF of the TCP video upload 

intra-domain and inter-domain traffic for both spanish and romanian scenarios 

(four lines). On the x-axis, a logarithmic scale has been used, in order to cover a 

range of several orders of magnitude. 

Observing the diagram, it can be noted that lines referred to the Romania traffic 

(the yellow one and the green one) are always at the left of the Spain traffic lines 
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(the blue one and the red one): it means that the TCP video upload traffic is bigger 

in Spain. 

By the way, observing the lines referred to the inter-domain traffic (the red one 

and the green one), it can be affirmed that the romanian performance is better, 

because the network is able to maintain a relative low volume of inter-domain 

traffic, because the number of peers is much bigger than the spanish network. 

 

 

6.6 P2P and CoreCast performance comparison 
 

This last analysis differs a little bit from the others, because its aim is 

making a comparison between the performance of a normal p2p network and the 

performance of a p2p network using the CoreCast protocol. With details, the 

comparison regards only the download video traffic, both UDP and TCP, 

separated in intra-domain and inter-domain traffic. 

The meaning of this evaluation is testing if actually CoreCast acts as a intra-

domain traffic reducer. In order to answer this question, it is necessary calculating 

the intra-domain and the inter-domain traffic for a normal p2p network and for a 

CoreCast network. The data about a “classical” p2p network could be simply 

extracted from the output file of the second Perl script, implementing the split 

between intra-domain sessions and inter-domain sessions (paragraph 6.3). 

Instead, the data about a CoreCast network have to be calculated using the 

formulas (3) and (4) shown in paragraph 4.4 (reported below), necessary to 

calculate the intra-domain and the inter-domain bandwidth. 

( ) ( )( )kCCHLISPjCCPLISP
T

BW er ⋅++⋅+=
1

int      (3) 
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( )( )kDATAIP
T

BW ra ⋅+=
1

int                                                    (4) 

In the end, just multiplying this two bandwidths with the total length of the traces 

(obtained through a subtraction between the timestamp of the first and the last 

packet of the session), it is possible to derive the relative amounts of intra and 

inter domain traffic. 

 Starting from the beginning, the first phase is the data extracting. In this 

contest, in addition to the usual information of traces always used during the 

previous analyses (IP source and destination addresses, the UDP and TCP source 

and destination port number and the payload), it is also necessary the timestamp 

(as in the precedent paragraph). So the TShark command structure is the 

following: 

 
tshark -r pplive.udp.pcap  -Tfields -e ip.src -e ip.dst -e 

udp.srcport -e udp.dstport -e ip.len -e frame.time_relative 

> spain_T_udp 

 

This time, the launched commands are four: two for UDP and TCP traffic of 

Spanish traces, two for UDP and TCP traffic of Romanian traces. 

In order to execute the formulas (3) and (4), just two parameters are missing: 

1. T, the average duration time of one session, expressed in seconds; 

2. DATA, the average payload size. 

 

For each of this parameters, a different Perl script has been implemented. 

The following block diagram (figure 6.36) refers to the estimation of T: 
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Fig. 6.36: Block diagram representing the logical process of the sixth Perl script 

implemented to calculate the T value 

 

The first part of the diagram differs a little bit from the usual session creation 

function, because in this case only the video download sessions are required. As a 

matter of a fact, the upload sessions are already discarded during this first step. 

Afterwards, the signaling sessions are also discarded during the second phase, in 

which the data structure, acted to contain the video sessions, is created. The 

duration time relative to the session (Ti) is calculated for every composed session. 

Then, all Ti are used to calculate the average duration time T.  

In order to have a graphic representation of the calculated T (T =0.025 

seconds), in the final part of the algorithm all the Ti are saved in a text file. Using 
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the former, it has been plotted the graph shown in figure 6.37, representing the 

CDF of the Ti. 

 
Fig. 6.37: representation of the CDF of the Ti values 

 

The figure has a logarithmic scale on x-axis referring to all the interarrival time 

intervals Ti; on the y-axis there is the CDF of the Ti. The value on the x-axis 

correspondent to a CDF = 0.5 is just the value Ti = 0.025. It means that there is at 

most the 50% of the samples referring to the indicated value: for this reason the 

value 0.025 seconds represents the median of Ti, i.e. the T value. As expected, the 

graphic representation confirms the data found analytically through the Perl script. 

 Once T is calculated, the DATA parameter should be calculated, so, also 

for it, a proper Perl script has been implemented, according to the flow diagram in 

figure 6.38. 
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Fig. 6.38: Flow chart representing the logical process of the seventh Perl script 

implemented to calculate the DATA value 

 

The first phase is identical to the previous diagram block (figure 6.36), for this 

reason just a function block has been reported. 

The structure of the following phase, concerning the calculus of the number of the 

packets and the payload sum for a session, has the same structure of the second 

phase of the diagram in figure 6.36. Just the calculated parameters change. 

After this step, using the data calculated for every session, the DATA value is 

obtained just making an average operation, because it represents the average 

payload size. 

Finally, a resume of the results got is printed in a text file. It contains the sum of 

the payloads of all session, the total number of the packet and the value of DATA. 

All of this three parameters is calculated for both TCP and UDP traffic, then the 

sum of these is used into the formula (4) to obtain the intra-domain bandwidth. 
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 At this stage of the game, all necessary parameters to use both formulas (3) 

and (4) are available. The results returned by the formulas are reassumed in the 

following tables: 

k 3252 TCP
j 200 last packet's timestamp 12.219,671825 ‐
T 0,025 first packet's timestamp 0 =
LISP 20 12219,67183
CCP 882,751898237040
CCH 24 UDP
IP 20 last packet's timestamp 0 ‐
DATA TCP 860,751898237040 first packet's timestamp 0 =
DATA UDP 0,000000000000 0
DATA total 860,751898237040

   =   12945535,19 bytes/seconds

  =   114568206,9 bytes/seconds TCP
2601600 bytes/seconds UDP
114568206,9 bytes/seconds Total

CORECAST INTER DOMAIN TRAFFIC  = (BWinter ∙LENGTH OF TRACE) = 147,3260965 Gbytes

CORECAST INTRA DOMAIN TRAFFIC  = (BWintra_TCP ∙LENGTH OF TRACE) = 1303,8384636620 Gbytes

 = (BWintra_UDP ∙LENGTH OF TRACE) = 29,6073949150 Gbytes

 = (BWintra_TOTAL ∙LENGTH OF TRACE) = 1303,8384636620 Gbytes

SPANISH NETWORK: INTRA‐DOMAIN AND INTER‐DOMAIN TRAFFIC CALCULUS FOR A CORECAST NETWORK 

INPUT DATA LENGTH OF TRACE

 
Table 6.2: resume of CoreCast’s results  for the Spanish scenario 

 

k 24253 TCP
j 1313 last packet's timestamp 9086,85421 ‐
T 0,025 first packet's timestamp 0 =
LISP 20 9086,85421
CCP 1222
CCH 24 UDP
IP 20 last packet's timestamp 9.807 ‐
DATA TCP 1.002,003544872900 first packet's timestamp 0 =
DATA UDP 878,967990996103 9807,302584
DATA total 888,899329491387

   =   107915120 bytes/seconds

  =   991466079 bytes/seconds TCP
872106827,4 bytes/seconds UDP
881741417,5 bytes/seconds Total

CORECAST INTER DOMAIN TRAFFIC  = (BWinter ∙LENGTH OF TRACE) = 985,6710539 Gbytes

CORECAST INTRA DOMAIN TRAFFIC  = (BWintra_TCP ∙LENGTH OF TRACE) = 9055,8154862889 Gbytes

 = (BWintra_UDP ∙LENGTH OF TRACE) = 7965,6164554233 Gbytes

 = (BWintra_TOTAL ∙LENGTH OF TRACE) = 8053,6165111925 Gbytes

ROMANIAN NETWORK: INTRA‐DOMAIN AND INTER‐DOMAIN TRAFFIC CALCULUS FOR A CORECAST NETWORK 

INPUT DATA LENGTH OF TRACE

 
Table 6.3: resume of CoreCast’s results  for the Romanian scenario 
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As pointed at the beginning of this paragraph, our purpose is comparing these 

results with the results extracted directly from the output file implementing the 

division between intra-domain and inter-domain traffic (paragraph 6.3). the data 

are reassumed here below: 

 

PEER‐TO‐PEER INTER DOMAIN TRAFFIC =     167,023710206151 Gbytes

PEER‐TO‐PEER INTRA DOMAIN TRAFFIC =     1926,24570011347 Gbytes

SPANISH NETWORK: INTRA‐DOMAIN AND INTER‐DOMAIN TRAFFIC CALCULUS FOR A PEER‐TO‐PEER NETWORK 

 

PEER‐TO‐PEER INTER DOMAIN TRAFFIC =     2622,61816918849 Gbytes

PEER‐TO‐PEER INTRA DOMAIN TRAFFIC =     17844,6774439569 Gbytes

ROMANIAN NETWORK: INTRA‐DOMAIN AND INTER‐DOMAIN TRAFFIC CALCULUS FOR A PEER‐TO‐PEER NETWORK 

 
Table 6.4: resume of P2P results  for Spain and Romania scenarios 

 

The comparison between the performance of a classical p2p network and a 

CoreCast network is all in favor of the former, because CoreCast succeeds in its 

aim of reducing the inter domain traffic. 

 

P2P  167,02371 Gbytes ‐

CoreCast 147,3261 Gbytes = 

SAVING 19,697614 Gbytes

Spain network's inter‐domain video downlaoad traffic

 

P2P  2622,6182 Gbytes ‐

CoreCast 985,67105 Gbytes = 

SAVING 1636,9471 Gbytes

Romania network's inter‐domain video downlaoad traffic

 
Table 6.5: saving obtained in inter-domain video download traffic through CoreCast using 
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The obtained saving is very considerable, and it is much bigger in Romania 

network. This is probably due to the ratio j
k

, as table 6.6 shows: 

 

 Spain scenario Romania scenario 

j
k  16,26 18,47144 

 

Table 6.6: k/j ratios comparing in both considered scenarios 

 

As explained in the fourth chapter, the parameter j represents the number of ASes 

in the network, and the parameter k is the number of the users. So, this ratio is 

very significant in CoreCast content, because the efficiency of the protocol is 

strictly connected with this parameter. It represents the distribution of the peers 

among the ASes of the network: if it is high, it means that the clients are located 

among few ASes. This is a good situation for CoreCast, because under this 

condition it is able to gain a big bandwidth saving (for this reason in Romania 

scenario CoreCast saves a huge amount of traffic). 

Furthermore, positives results have been achieved in intra-domain traffic too, as 

the table 6.7 shows. 
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P2P  1926,2457 Gbytes ‐

CoreCast 1303,8384636620 Gbytes  = 

SAVING 622,4072365 Gbytes

Spain network's intra‐domain video downlaoad traffic

 

P2P  17844,67744 Gbytes  ‐

CoreCast 8053,6165111925 Gbytes  = 

SAVING 9791,060933 Gbytes

Romania network's intra‐domain video downlaoad traffic

 
Table 6.7: saving obtained in intra-domain video download traffic through CoreCast using 

 

Also in this case, more considerable advantages are obtained in Romania network. 

All of these results confirm that the CoreCast protocol can bring several 

advantages to the current p2p networks, improving the quality and reducing the 

costs in video streaming service. 
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CONCLUSIONS 
 

 

 During this work, the video delivery topic has been faced from several 

points of view, analyzing its characteristics, studying its applications and all the 

architecture providing this service. 

The growing of the users interest in multimedia applications, such as Video on 

Demand, videoconferencing, or real-time video streaming of popular event, has 

pushed the researches in looking for more efficient methods, to allow the delivery 

to a constantly increasing number of applicants.  

Generally, one source host (but also several sources) sends a video content 

to a multitude of recipients. There are several delivery methods, such as 

unicasting and broadcasting. As demonstrated during the first chapter, these two 

methods aren’t very efficient, because they realize a bandwidth wasting, other 

than problems of delay. Even if multicasting represents the best way to allow a 

video live-streaming service, it is also very expensive, because it implies the 

maintaining of the knowledge of network topology in every router. Some 

scalability problems also affect multicasting, because as the numbers of multicast 

groups members increases, the data that routers have to store grow, too. 

For this reason, the attention to the Peer-to-peer world has increased more 

and more, even that today a lot of multimedia applications have been 

implemented on p2p networks. Of course managing a video delivery of peer-to-

peer network is cheaper than using a multicasting approach, but also in this 

contest, some problems about  QoS parameters and bandwidth consumption still 

appear. Among all these problems, this work has pointed the attention on the 

intra-ISP and inter-ISP peer link availability, just because it can lead the 

formation of some bottlenecks in the proximity of ISP boundaries. 
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In order to improve the video streaming service on p2p networks, a new 

network-layer live streaming protocol has been thought. CoreCast is built on top 

of the LISP, and its most strong point is the reduction of inter-domain traffic (it 

can be defined as an ISP-friendly protocol). As a matter of fact, this work has 

demonstrated that a remarkable saving of inter domain bandwidth (and of intra-

domain bandwidth too) is obtained using CoreCast  in transmitting a very popular 

video content through a large scale p2p network, like PPlive. Note that CoreCast 

does not imply a lot of modifications of the existing p2p framework, furthermore 

it works on LISP, that is considered the most promising implementation of the 

Loc/ID split. In future, CoreCast could be implied on the top of other structures 

implementing the Loc/ID split, because its adoption is not bounded to the LISP 

structure. 

During these work a lot of evaluations have been made on a big amount of 

data captured during the Michael Jackson funerals. The results can give several 

analytical information about the traffic characteristic, such as the distinction 

between download and upload data, UDP and TCP traffic, data or control and 

finally inter-domain and intra-domain. All of these information are particularly 

interesting and useful, because their study allows understanding the p2p video 

delivery mechanisms, the peers behavior and the network characteristics. 

 Furthermore, this work has analytically demonstrated that CoreCast can be 

considered a reliable solution to the problem of intra-domain traffic. It gives a 

more satisfactory performance, compared with a “traditional” p2p streaming-live 

service. Since the analyzed traces can give information about network only from 

the point of view of the source node, it is impossible to achieve a general idea of 

the network viewed from all peers. Despite this lack, the heuristic algorithm used 

in order to simulate the distribution of the traffic among all peers, has turned out 

to be very useful to separate data traffic to signaling. 

 Finding a way to obtain the data about the transmission from every peer of 

the network, can be an interesting start point for future analyses of the peer-to-

peer networks. 
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Other network features can be understood, for instance, studying the trend of the 

population (i.e. the number of different peers that populate the network in every 

moment) considering several channels (in this work just one channel has been 

considered). Besides, a load-balancing investigation could be interesting in order 

to understand the distribution of the workloads among the peers, than to try to 

implement some load-balance algorithms aimed to homogenize the traffic 

distribution.   
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Used acronyms’ list 
 

 

AAA = Authentication, Authorization, and Accounting 

AAC = Advanced Audio Coding 

ADSL = Asymmetric Digital Subscriber Line 

ARP = Address Resolution Protocol 

AS = Autonomous System 

AS = Autonomous System 

ASM = Any Source Multicast 

BSR = Bootstrap Router 

BST = British Summer Time 

CDF = Cumulative Distribution Function 

ChanDstList = Channel Destination List 

CPU = Central Processing Unit 

DCCP = Datagram Congestion Control Protocol 

DFZ = Default Free Zone 

DS = Differentiated Services 

EID = Endpoint Identifier 

EOF = End of File 

ETR = the Egress Tunnel Router 

FF = Fixed-Filter 

FIFO = First In First Out 

FTP = File Transfer Protocol 

GIMP = GNU Image Manipulation Program 

GNU = GNU is Not Unix 

GPL = General Public License 

GTK = GIMP ToolKit 
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HTTP = Hyper Text Transfer Protocol 

ICMP = Internet Control Message Protocol 

IDE = Integrated Development Environment 

IEEE = Institute of Electrical and Electronic Engineers 

IETF = Internet Engineering Task Force 

IGMP = Internet Group Management Protocol 

IP = Internet Protocol 

IPT = Inter Packet Time 

IPTV = Internet Protocol TeleVision 

IPv4 = Internet Protocol Version 4 

IPv6 = Internet Protocol Version 6 

ISP = Internet Service Provider 

ITR = Ingress Tunnel Router  

LAN = Local Area Network 

LISP = Locator/ID Separation Protocol 

Loc/ID = Locator/Identifier 

MAC = Media Access Control 

MATLAB = Matrix Laboratory 

MPEG = Moving Picture Experts Group 

NVoD = Near Video on Demand 

OSPF = Open Shortest Path First 

P2P = Peer-to-Peer 

Perl = Practical Extraction and Report Language 

PS = Payload Size 

QoS = Quality of Service 

RAM = Random Access Memory 

RG = Routing Goop 

RIP = Routing Information Protocol 

RLOC = Routing Locator  

RMVB = Real Media Variable Bitrate 

RP = Rendezvous Point 
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RPB = Reverse-Path Broadcasting 

RPF = Reverse-Path Forwarding 

RPM =  Reverse-Path Multicasting 

RR = Receiver Report 

RS - ECC = Reed Solomon Error Correcting Code 

RSVP = Resource Reservation Protocol 

RTCP = Real Time Control Protocol 

RTP = Real Time Protocol 

SE = Shared-Explicit 

SLA = Service Layer Agreement 

SR = Sender Report 

SSM = Single Source Multicast 

TCP = Transmission Control Protocol 

TRPB = Truncated Reverse-Path Broadcasting 

TTL = Time to Live 

TV = TeleVision 

TVoD = True Video on Demand 

UDP = User Datagram Protocol 

UVoD = Unified Video on Demand 

VoD = Video on Demand 

WAN = Wide Area Network 

WAR = Write After Read 

WE = Wildcard-Filter  

WMV = Windows Media Video 
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APPENDIX A 

Implemented Perl scripts 
 

 

 In this section all Perl scripts produced during this work are reported 

according to the order of their using in the sixth chapter. Some comments are 

writing in order to help the comprehension.  

 

1. UDP-TCP, Upload-Download, Control-Data 

traffic division 
  
#!/usr/bin/perl 

#reference source IP address 

$ip_rif = '147.83.130.144';    #Spain 

#$ip_rif = '192.168.1.101';    #Romania 

 

my %ip; #it keeps all IP addresses of the network 

#hash structures for printing 

my %TCP_up_video; #ip and payload of TCP upload video traffic 

my %TCP_up_control;#ip and payload of TCP upload control traffic 

my %TCP_down_video; #ip and payload of TCP download video traffic 

my %TCP_down_control; #ip and payload of TCP download control 

traffic 

my %UDP_up_video; #ip and payload of UDP upload video traffic 

my %UDP_up_control; #ip and payload of UDP upload control traffic 

my %UDP_down_video; #ip and payload of UDP download video traffic 
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my %UDP_down_control; #ip and payload of UDP download control 

traffic 

 

# ***************** TCP ***************** 

#TCP sessions hash definition 

my %up_d_ip; #contains all IP destination address in upload 

my %down_d_ip; #contains all IP source address in download 

#TCP packets file opening 

open(IN, "< C:/Program Files/Perl Express/Input/TCP_only.txt") || 

die "It’s impossible to open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

#control instruction 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

# hash loading 

if($s_ip eq $ip_rif) 

 { #upload session 

$up_d_ip{$d_ip}{$s_port}{$d_port}= []unless exists 

$up_d_ip{$d_ip}{$s_port}{$d_port}; 

push @{$up_d_ip{$d_ip}{$s_port}{$d_port}}, $byte; 

$ip{$d_ip}=1; 

 } 

else 

 {  #download session 

$down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 

push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $byte; 

 $ip{$s_ip}=1; 

 } 

} 

#file closing 

close(IN); 

 

#split of video and control traffic 
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foreach my $a( keys %up_d_ip) 

{       #cicle of source ports 

 foreach my $b( keys %{$up_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$up_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$up_d_ip{$a}{$b}{$c}}; $i++) 

                        { 

If (${$up_d_ip{$a}{$b}{$c}}[$i]>1000) 

              {$count++;} 

                    $somma +=$up_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$TCP_up_video{$a}+=$somma;} 

                  else {$TCP_up_control{$a}+=$somma;}}}} 

 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$down_d_ip{$a}{$b}{$c}};$i++) 

                        { 

                        If (${$down_d_ip{$a}{$b}{$c}}[$i]>1000) 

{$count++;} 

                        $somma +=$down_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$TCP_down_video{$a}+=$somma;} 

                        else {$TCP_down_control{$a}+=$somma;}}}} 

 

# ***************** UDP ***************** 
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#UDP sessions hash definition 

my %up_d_ip; #contains all IP destination address in upload 

my %down_d_ip; #contains all IP source address in download 

#UDP packets file opening 

open(IN, "< C:/Program Files/Perl Express/Input/UDP_only.txt") || 

die "It’s impossible to open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

#control instruction 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

# hash loading 

if($s_ip eq $ip_rif) 

 { #upload session 

$up_d_ip{$d_ip}{$s_port}{$d_port}= []unless exists 

$up_d_ip{$d_ip}{$s_port}{$d_port}; 

push @{$up_d_ip{$d_ip}{$s_port}{$d_port}}, $byte; 

$ip{$d_ip}=1; 

 } 

else 

 {  #download session 

$down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 

push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $byte; 

 $ip{$s_ip}=1; 

 } 

} 

#file closing 

close(IN); 

 

#split of video and control traffic 

foreach my $a( keys %up_d_ip) 

{       #cicle of source ports 

 foreach my $b( keys %{$up_d_ip{$a} } ) 

        {       #cicle on destination ports 
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         foreach my $c( keys %{$up_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$up_d_ip{$a}{$b}{$c}}; $i++) 

                        { 

If (${$up_d_ip{$a}{$b}{$c}}[$i]>1000) 

              {$count++;} 

                    $somma +=$up_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$UDP_up_video{$a}+=$somma;} 

                  else {$UDP_up_control{$a}+=$somma;}}}} 

 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$down_d_ip{$a}{$b}{$c}};$i++) 

                        { 

                        If (${$down_d_ip{$a}{$b}{$c}}[$i]>1000) 

{$count++;} 

                        $somma +=$down_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$UDP_down_video{$a}+=$somma;} 

                        else {$UDP_down_control{$a}+=$somma;}}}} 

 

#********************** PRINTING ******************************** 

 

open(IN, "> C:/Program Files/Perl Express/Input/total_output.txt") 

|| die "It’s impossible to open the file\n\n"; 
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#human labels printing 

print "       IP \t\t|\t\t\t VIDEO 

\t\t\t\t\t|\t\t\tCONTROL\t\t\t\t\t|\t\t\t TOTAL \t\t\t\t\t|\n"; 

print 

"\t\t\t|\t\tupload\t\t|\t\tdownload\t|\t\tupload\t\t|\t\tdownload\

t|\t\tupload\t\t|\t\tdownload\t|\n"; 

print "\t\t\t|  TCP  \t|  UDP  \t|  TCP  \t|  UDP  \t|  TCP  \t|  

UDP  \t|  TCP  \t|  UDP  \t|  TCP  \t|  UDP  \t|  TCP  \t|  UDP  

\t| \n\n"; 

#pc labels printing 

printf IN "       IP \t\t|\t VIDEO \t\t|\tCONTROL\t\t|\t TOTAL 

\t\t|\n"; 

printf IN 

"\t\t\t|upload\t|download\t|upload\t|download\t|upload\t|download\

t|\n"; 

printf IN 

"\t\t\t|TCP\t|UDP\t|TCP\t|UDP\t|TCP\t|UDP\t|TCP\t|UDP\t|TCP\t|UDP\

t|TCP\t|UDP\t|\n\n"; 

 

#values printing 

foreach $k(keys %ip) 

{ 

if( !($TCP_up_video{$k})) {$TCP_up_video{$k}= 0;} 

if( !($TCP_up_control{$k})) {$TCP_up_control{$k}= 0;} 

if( !($TCP_down_video{$k})) {$TCP_down_video{$k}= 0;} 

if( !($TCP_down_control{$k})) {$TCP_down_control{$k}= 0;} 

if( !($UDP_up_video{$k})) {$UDP_up_video{$k}= 0;} 

if( !($UDP_up_control{$k})) {$UDP_up_control{$k}= 0;} 

if( !($UDP_down_video{$k})) {$UDP_down_video{$k}= 0;} 

if( !($UDP_down_control{$k})) {$UDP_down_control{$k}= 0;} 

$s1= $TCP_up_video{$k} + $TCP_up_control{$k}; 

$s2= $UDP_up_video{$k} + $UDP_up_control{$k}; 

$s3= $TCP_down_video{$k} + $TCP_down_control{$k}; 

$s4= $UDP_down_video{$k} + $UDP_down_control{$k}; 

 

#***************** HUMAN PRINTING  *********************** 
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print 

"$k\t\t$TCP_up_video{$k}\t\t$UDP_up_video{$k}\t\t$TCP_down_video{$

k}\t\t$UDP_down_video{$k}\t\t$TCP_up_control{$k}\t\t$UDP_up_contro

l{$k}\t\t$TCP_down_control{$k}\t\t$UDP_down_control{$k}\t\t$s1\t\t

$s2\t\t$s3\t\t$s4\n"; 

 

#********************* PC PRINTING  *********************** 

 

 

printf IN 

"%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n",$k,$TCP_up_

video{$k},$UDP_up_video{$k},$TCP_down_video{$k},$UDP_down_video{$k

},$TCP_up_control{$k},$UDP_up_control{$k},$TCP_down_control{$k},$U

DP_down_control{$k},$s1,$s2,$s3,$s4; 

} 

close(IN); 

 

 

2. Intra-domain and inter-domain traffic division 
 

#!/usr/bin/perl 

#reference source IP address 

$ip_rif = '147.83.130.144';    #Spain 

#$ip_rif = '192.168.1.101';    #Romania 

 

my %ip; #it keeps all IP addresses of the network 

#hash structures for printing 

my %TCP_up_video; #ip and payload of TCP upload video traffic 

my %TCP_up_control;#ip and payload of TCP upload control traffic 

my %TCP_down_video; #ip and payload of TCP download video traffic 

my %TCP_down_control; #ip and payload of TCP download control 

traffic 

my %UDP_up_video; #ip and payload of UDP upload video traffic 

my %UDP_up_control; #ip and payload of UDP upload control traffic 
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my %UDP_down_video; #ip and payload of UDP download video traffic 

my %UDP_down_control; #ip and payload of UDP download control 

traffic 

 

# ***************** TCP ***************** 

#TCP sessions hash definition 

my %up_d_ip; #contains all IP destination address in upload 

my %down_d_ip; #contains all IP source address in download 

#TCP packets file opening 

open(IN, "< C:/Program Files/Perl Express/Input/TCP_only.txt") || 

die "It’s impossible to open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

#control instruction 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

# hash loading 

if($s_ip eq $ip_rif) 

 { #upload session 

$up_d_ip{$d_ip}{$s_port}{$d_port}= []unless exists 

$up_d_ip{$d_ip}{$s_port}{$d_port}; 

push @{$up_d_ip{$d_ip}{$s_port}{$d_port}}, $byte; 

$ip{$d_ip}=1; 

 } 

else 

 {  #download session 

$down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 

push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $byte; 

 $ip{$s_ip}=1; 

 } 

} 

#file closing 

close(IN); 
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#split of video and control traffic 

foreach my $a( keys %up_d_ip) 

{       #cicle of source ports 

 foreach my $b( keys %{$up_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$up_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$up_d_ip{$a}{$b}{$c}}; $i++) 

                        { 

If (${$up_d_ip{$a}{$b}{$c}}[$i]>1000) 

              {$count++;} 

                    $somma +=$up_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$TCP_up_video{$a}+=$somma;} 

                  else {$TCP_up_control{$a}+=$somma;}}}} 

 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$down_d_ip{$a}{$b}{$c}};$i++) 

                        { 

                        If (${$down_d_ip{$a}{$b}{$c}}[$i]>1000) 

{$count++;} 

                        $somma +=$down_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$TCP_down_video{$a}+=$somma;} 

                        else {$TCP_down_control{$a}+=$somma;}}}} 
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# ***************** UDP ***************** 

#UDP sessions hash definition 

my %up_d_ip; #contains all IP destination address in upload 

my %down_d_ip; #contains all IP source address in download 

#UDP packets file opening 

open(IN, "< C:/Program Files/Perl Express/Input/UDP_only.txt") || 

die "It’s impossible to open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

#control instruction 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

# hash loading 

if($s_ip eq $ip_rif) 

 { #upload session 

$up_d_ip{$d_ip}{$s_port}{$d_port}= []unless exists 

$up_d_ip{$d_ip}{$s_port}{$d_port}; 

push @{$up_d_ip{$d_ip}{$s_port}{$d_port}}, $byte; 

$ip{$d_ip}=1; 

 } 

else 

 {  #download session 

$down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 

push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $byte; 

 $ip{$s_ip}=1; 

 } 

} 

#file closing 

close(IN); 

 

#split of video and control traffic 

foreach my $a( keys %up_d_ip) 

{       #cicle of source ports 

 foreach my $b( keys %{$up_d_ip{$a} } ) 
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        {       #cicle on destination ports 

         foreach my $c( keys %{$up_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$up_d_ip{$a}{$b}{$c}}; $i++) 

                        { 

If (${$up_d_ip{$a}{$b}{$c}}[$i]>1000) 

              {$count++;} 

                    $somma +=$up_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$UDP_up_video{$a}+=$somma;} 

                  else {$UDP_up_control{$a}+=$somma;}}}} 

 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

     my $somma=0; 

                  my $i=0; 

                  for ($i=0; $i<= $#{$down_d_ip{$a}{$b}{$c}};$i++) 

                        { 

                        If (${$down_d_ip{$a}{$b}{$c}}[$i]>1000) 

{$count++;} 

                        $somma +=$down_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) {$UDP_down_video{$a}+=$somma;} 

                        else {$UDP_down_control{$a}+=$somma;}}}} 

 

#*************** IP AND AS NUMBER LOADING *********************** 

my %ip_as; #definition of the hash collecting all IP address and 

AS number 
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open(IN, "< C:/Program Files/Perl Express/Input/ip2asn.dat") || 

die "It’s impossible to open the file\n\n"; 

while(<IN>) 

{ 

chomp; 

(my $as, my $barra, my $ip) = split; 

if(  (!($ip)) || (!($as)) || (($as) eq 'NA') ) 

{ next;} 

$ip_as{$ip}=$as; 

} 

close (IN); 

 

#*************************** PRINTING ************************** 

open(IN, "> C:/Program Files/Perl 

Express/Input/spain_pc_output.txt") || die " It’s impossible to 

open the file\n\n"; 

 

#human labels printing 

print "       IP \t\t|  AS\t|\t\t\t VIDEO 

\t\t\t\t\t|\t\t\tCONTROL\t\t\t\t\t|\t\t\t TOTAL \t\t\t\t\t|\n"; 

print 

"\t\t\t|\t|\t\tupload\t\t|\t\tdownload\t|\t\tupload\t\t|\t\tdownlo

ad\t|\t\tupload\t\t|\t\tdownload\t|\n"; 

print "\t\t\t|\t|  TCP  \t|  UDP  \t|  TCP  \t|  UDP  \t|  TCP  

\t|  UDP  \t|  TCP  \t|  UDP  \t|  TCP  \t|  UDP  \t|  TCP  \t|  

UDP  \t| \n\n"; 

 

#pc labels printing 

printf IN "       IP \t\t| AS\t|\t VIDEO \t\t|\tCONTROL\t\t|\t 

TOTAL \t\t|\n"; 

printf IN 

"\t\t\t|\t|upload\t|download\t|upload\t|download\t|upload\t|downlo

ad\t|\n"; 

printf IN 

"\t\t\t|\t|TCP\t|UDP\t|TCP\t|UDP\t|TCP\t|UDP\t|TCP\t|UDP\t|TCP\t|U

DP\t|TCP\t|UDP\t|\n\n"; 

#value printing 
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foreach $k(keys %ip_as) 

{ 

if( !($TCP_up_video{$k})) {$TCP_up_video{$k}= 0;} 

if( !($TCP_up_control{$k})) {$TCP_up_control{$k}= 0;} 

if( !($TCP_down_video{$k})) {$TCP_down_video{$k}= 0;} 

if( !($TCP_down_control{$k})) {$TCP_down_control{$k}= 0;} 

if( !($UDP_up_video{$k})) {$UDP_up_video{$k}= 0;} 

if( !($UDP_up_control{$k})) {$UDP_up_control{$k}= 0;} 

if( !($UDP_down_video{$k})) {$UDP_down_video{$k}= 0;} 

if( !($UDP_down_control{$k})) {$UDP_down_control{$k}= 0;} 

$s1= $TCP_up_video{$k} + $TCP_up_control{$k}; 

$s2= $UDP_up_video{$k} + $UDP_up_control{$k}; 

$s3= $TCP_down_video{$k} + $TCP_down_control{$k}; 

$s4= $UDP_down_video{$k} + $UDP_down_control{$k}; 

 

#***********************  HUMAN PRINTING  *********************** 

print 

"$k\t\t$ip_as{$k}\t$TCP_up_video{$k}\t\t$UDP_up_video{$k}\t\t$TCP_

down_video{$k}\t\t$UDP_down_video{$k}\t\t$TCP_up_control{$k}\t\t$U

DP_up_control{$k}\t\t$TCP_down_control{$k}\t\t$UDP_down_control{$k

}\t\t$s1\t\t$s2\t\t$s3\t\t$s4\n"; 

 

 

#***********************  PC PRINTING  *********************** 

printf IN 

"%s\t%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n",$k,$ip_

as{$k},$TCP_up_video{$k},$UDP_up_video{$k},$TCP_down_video{$k},$UD

P_down_video{$k},$TCP_up_control{$k},$UDP_up_control{$k},$TCP_down

_control{$k},$UDP_down_control{$k},$s1,$s2,$s3,$s4; 

} 

close(IN); 
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3. Ports’ utilization 
 
#!/usr/bin/perl 

#reference source IP elimination 

 

#insert the source IP according to the traces that you are going 

to analize 

#$ip_rif = '147.83.130.144';  #Spain 

$ip_rif = '192.168.1.101';    #Romania 

 

#TCP files opening 

open(IN, "< C:/Program Files/Perl Express/Input/Romania_tcp.txt") 

|| die "It’s impossible to open the file\n\n"; 

open(OUT, "> C:/Program Files/Perl 

Express/Input/Romania_ports_tcp.txt") || die " It’s impossible to 

open the file\n\n"; 

 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

#control instruction 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

#output writing 

if($s_ip eq $ip_rif) 

 { #upload 

        print OUT "$d_ip\t$s_port\t$d_port\n"; } 

else 

 {  #download 

        print OUT "$s_ip\t$d_port\t$s_port\n"; } 

} 

#TCP files closing 

close(IN); 

close (OUT); 
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open(IN, "< C:/Program Files/Perl Express/Input/Romania_udp.txt") 

|| die "Impossibile aprire il file\n\n"; 

open(OUT, "> C:/Program Files/Perl 

Express/Input/Romania_ports_udp.txt") || die "It’s impossible to 

open the file\n\n"; 

 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

#hashes loading 

if($s_ip eq $ip_rif) 

 { #siamo in upload 

        print OUT "$d_ip\t$s_port\t$d_port\n"; } 

else 

 {  #siamo in download 

        print OUT "$s_ip\t$d_port\t$s_port\n"; } 

} 

#UDP files closing 

close(IN); 

close (OUT); 

 

#ROMANIA 

#*************************  TCP  ********************************* 

my %tcp_s_h; #it keeps all IP destination address in upload 

my %tcp_d_h; #it keeps all IP source address in download 

 

#TCP file opening 

open(IN, "< C:/Program Files/Perl 

Express/Input/romania_ports_tcp.txt") || die "It’s impossible to 

open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $ip, my $s_port, my $d_port) = split; 

if(!($ip)) { next;} 
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#hash loading 

$tcp_s_h{$s_port}++; 

$tcp_d_h{$d_port}++; 

} 

close(IN); 

 

#*************************  UDP  ********************************* 

my %udp_s_h; #it keeps all IP destination address in upload 

my %udp_d_h; # it keeps all IP source address in download 

 

#UDP file opening 

open(IN, "< C:/Program Files/Perl 

Express/Input/romania_ports_udp.txt") || die "It’s impossible to 

open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $ip, my $s_port, my $d_port) = split; 

if(!($ip)) { next;} 

#hashes loading 

$udp_s_h{$s_port}++; 

$udp_d_h{$d_port}++; 

} 

close(IN); 

 

#************************** PRINTING **************************** 

open(OUT, "> C:/Program Files/Perl 

Express/Input/romania_tcp_sourceport_count.txt") || die " It’s 

impossible to open the file\n\n"; 

foreach $k(keys %tcp_s_h) {print OUT "$k\t$tcp_s_h{$k}\n";} 

close(OUT); 

 

open(OUT, "> C:/Program Files/Perl 

Express/Input/romania_tcp_destport_count.txt") || die " It’s 

impossible to open the file\n\n"; 

foreach $k(keys %tcp_d_h) {print OUT "$k\t$tcp_d_h{$k}\n";} 

close(OUT); 

 



 
 

Appendix A                                                                        Implemented Perl scripts 

152 
 

open(OUT, "> C:/Program Files/Perl 

Express/Input/romania_udp_sourceport_count.txt") || die " It’s 

impossible to open the file\n\n"; 

foreach $k(keys %udp_s_h) {print OUT "$k\t$udp_s_h{$k}\n";} 

close(OUT); 

 

open(OUT, "> C:/Program Files/Perl 

Express/Input/romania_udp_destport_count.txt") || die " It’s 

impossible to open the file\n\n"; 

foreach $k(keys %udp_d_h) {print OUT "$k\t$udp_d_h{$k}\n";} 

close(OUT); 

 

#hashes emptying 

%tcp_s_h=(); 

%tcp_d_h=(); 

%udp_s_h=(); 

%udp_d_h=(); 

 

#SPAIN 

#*************************  TCP  ********************************* 

my %tcp_s_h; #it keeps all IP destination address in upload 

my %tcp_d_h; #it keeps all IP source address in download 

 

#TCP file opening 

open(IN, "< C:/Program Files/Perl 

Express/Input/spain_ports_tcp.txt") || die "It’s impossible to 

open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $ip, my $s_port, my $d_port) = split; 

if(!($ip)) { next;} 

#hash loading 

$tcp_s_h{$s_port}++; 

$tcp_d_h{$d_port}++; 

} 

close(IN); 
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#*************************  UDP  ********************************* 

my %udp_s_h; #it keeps all IP destination address in upload 

my %udp_d_h; # it keeps all IP source address in download 

 

#UDP file opening 

open(IN, "< C:/Program Files/Perl 

Express/Input/spain_ports_udp.txt") || die "It’s impossible to 

open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $ip, my $s_port, my $d_port) = split; 

if(!($ip)) { next;} 

#hashes loading 

$udp_s_h{$s_port}++; 

$udp_d_h{$d_port}++; 

} 

close(IN); 

 

#************************** PRINTING **************************** 

open(OUT, "> C:/Program Files/Perl 

Express/Input/spain_tcp_sourceport_count.txt") || die " It’s 

impossible to open the file\n\n"; 

foreach $k(keys %tcp_s_h) {print OUT "$k\t$tcp_s_h{$k}\n";} 

close(OUT); 

 

open(OUT, "> C:/Program Files/Perl 

Express/Input/spain_tcp_destport_count.txt") || die " It’s 

impossible to open the file\n\n"; 

foreach $k(keys %tcp_d_h) {print OUT "$k\t$tcp_d_h{$k}\n";} 

close(OUT); 

 

open(OUT, "> C:/Program Files/Perl 

Express/Input/spain_udp_sourceport_count.txt") || die " It’s 

impossible to open the file\n\n"; 

foreach $k(keys %udp_s_h) {print OUT "$k\t$udp_s_h{$k}\n";} 

close(OUT); 
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open(OUT, "> C:/Program Files/Perl 

Express/Input/spain_udp_destport_count.txt") || die "It’s 

impossible to open the file\n\n"; 

foreach $k(keys %udp_d_h) {print OUT "$k\t$udp_d_h{$k}\n";} 

close(OUT); 

 

 

4. Network population for every minute 
 

FIRST SCRIPT 

 
#!/usr/bin/perl 

 

#this script aims the elimination of the reference source IP 

address 

 

#insert the source IP according to the traces that you are going 

to eliminate 

#$ip_rif = '147.83.130.144';  #Spain 

$ip_rif = '192.168.1.101';    #Romania 

 

#file opening 

open(IN, "< C:/Program Files/Perl 

Express/Input/romania_timestamp.txt") || die "It’s impossible to 

open the file\n\n"; 

open(OUT, "> C:/Program Files/Perl 

Express/Input/romania_timestamp2.txt") || die "It’s impossible to 

open the file\n\n"; 

 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $timestamp) = split; 

#control instruction 
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if(  (!($s_ip)) || (!($d_ip)) || (!($timestamp)) || ( ($s_ip) eq 

'0.0.0.0') || ( ($d_ip) eq '0.0.0.0') || ( ($s_ip) eq 'NA') || ( 

($d_ip) eq 'NA') ) { next;} 

#hashes loading 

if($s_ip eq $ip_rif) 

 { #upload 

        print OUT "$d_ip\t$timestamp\n"; } 

else 

 {  #download 

        print OUT "$s_ip\t$timestamp\n"; } 

} 

#files closing 

close(IN); 

close (OUT); 

 

 

SECOND SCRIPT 

 

#!/usr/bin/perl 

my %minute; #it keeps all IP destination address appeareed during 

one minute 

my $time=60; #it keeps the time session, it has increased of 60 

units per time 

my $i=59;  #minuts counter referred to the Romania’s traces 

 

open(IN, "< C:/Program Files/Perl 

Express/Input/romania_timestamp2.txt") || die "It’s impossible to 

open the file\n\n"; 

open(OUT, "> C:/Program Files/Perl 

Express/Input/romania_minutes.txt") || die "It’s impossible to 

open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $ip, my $timestamp) = split; 
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if(  (!($ip)) || (!($timestamp)) || ( ($ip) eq '0.0.0.0') || ( 

($ip) eq 'NA') ) { next;} 

if ($timestamp<= $time){ 

 $minute{$ip}= 1; 

} 

else { 

$distinti= scalar keys %minute; #calculus of the hash 

elements 

 print OUT "$i\t$distinti\n"; 

 $time+=60; 

 $i++; 

 %minute= (); #the temporary hash is emptied 

}} 

#files closing 

close(IN); 

close(OUT); 

 

5. T calculus 
 

#!/usr/bin/perl 

 

#insert the source IP according to the traces that you are going 

to analyze 

$ip_rif = '147.83.130.144';  #Spain 

#$ip_rif = '192.168.1.101';  #Romania 

 

my @timestamp; #it keeps the duration times for all sessions 

my @interarrivo; #it contains all Ti 

 

#***************************  TCP  *************************** 

#TCP hash definition 

my %down_d_ip; #it keeps all IP source address in download 

 

#TCP files opening 
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open(IN, "< C:/Program Files/Perl Express/Input/spain_T_tcp.txt") 

|| die "It’s impossible to open the file\n\n"; 

#open(IN, "< C:/Program Files/Perl 

Express/Input/romania_T_tcp.txt") || die ""It’s impossible to open 

the file\n\n"; 

 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte, my $tmp) = 

split; 

#control instruction 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

 

#hashes loading 

my @vettore; 

push @vettore, $byte; 

push @vettore, $tmp; 

my $punt = \@vettore; 

 

if(!($s_ip eq $ip_rif)) 

 {  # download 

 $down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 

      push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $punt; 

 $ip{$s_ip}=1; 

 } 

} 

close(IN); 

 

#ciclo sui source ip address  ---> TCP download traffic 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 
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                { 

                 my $count=0; 

     my $somma=0; 

                  my $limit =$#{$down_d_ip{$a}{$b}{$c}}; 

                  for (my $i=0; $i<= $limit; $i++) 

                        { 

                         if(${$down_d_ip{$a}{$b}{$c}}[$i][0]>1000) 

  {$count++;} 

                         $somma +=$down_d_ip{$a}{$b}{$c}[$i][0]; 

                        } 

                        if ($count>10) 

                        { 

            my @inter;                                

for (my $i=0; $i<=$limit; $i++) 

{ 

$inter[$i] = ${$down_d_ip{$a}{$b}{$c}}[$i][1]} 

                        my $limit2=$#inter; 

                        my $start = $inter[0]; 

                        my $end = $inter[$limit2]; 

                        my $ti = $end-$start; 

                        my $t = $ti/$limit; 

                        push @timestamp, $t; 

      my $int=0;  

      for (my $i=1; $i<=$limit; $i++) 

                                { 

                                  $int= $inter[$i]-$inter[$i-1]; 

                                  push @interarrivo, $int; 

}}}}} 

 

#***************************  UDP  *************************** 

#UDP hash definition 

my %down_d_ip; #it keeps all IP source address in download 

 

#UDP files opening 

open(IN, "< C:/Program Files/Perl Express/Input/spain_T_udp.txt") 

|| die "It’s impossible to open the file\n\n"; 
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#open(IN, "< C:/Program Files/Perl 

Express/Input/romania_T_udp.txt") || die "It’s impossible to open 

the file\n\n"; 

 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte, my $tmp) = 

split; 

#control instruction 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

 

#hashes loading 

my @vettore; 

push @vettore, $byte; 

push @vettore, $tmp; 

my $punt = \@vettore; 

 

if(!($s_ip eq $ip_rif)) 

 {  #download 

 $down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 

      push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $punt; 

 $ip{$s_ip}=1; 

 } 

} 

close(IN); 

 

#ciclo sui source ip address  ---> UDP download traffic 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 
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     my $somma=0; 

                  my $limit =$#{$down_d_ip{$a}{$b}{$c}}; 

                  for (my $i=0; $i<= $limit; $i++) 

                        { 

                         if(${$down_d_ip{$a}{$b}{$c}}[$i][0]>1000) 

  {$count++;} 

                         $somma +=$down_d_ip{$a}{$b}{$c}[$i][0]; 

                        } 

                        if ($count>10) 

                        { 

            my @inter;                                

for (my $i=0; $i<=$limit; $i++) 

{ 

$inter[$i] = ${$down_d_ip{$a}{$b}{$c}}[$i][1]} 

                        my $limit2=$#inter; 

                        my $start = $inter[0]; 

                        my $end = $inter[$limit2]; 

                        my $ti = $end-$start; 

                        my $t = $ti/$limit; 

                        push @timestamp, $t; 

      my $int=0;  

      for (my $i=1; $i<=$limit; $i++) 

                                { 

                                  $int= $inter[$i]-$inter[$i-1]; 

                                  push @interarrivo, $int; 

}}}}} 

 

*************************** PRINTING *************************** 

my $t_sum; 

my $elements= scalar @timestamp; 

foreach $k (@timestamp) { $t_sum+=$k;} 

my $T = $t_sum/$elements; 

print "duration time of a session: T =  $T\n\n"; 

open(OUT, "> C:/Program Files/Perl 

Express/Input/Spain_interarrivo.txt") || die “It’s impossible to 

open the file\n\n"; 
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#open(OUT, "> C:/Program Files/Perl 

Express/Input/Romania_interarrivo.txt") || die "It’s impossible to 

open the file\n\n"; 

foreach my $d (@interarrivo) { print OUT "$d\n";} 

 

6. DATA calculus 
 

#!/usr/bin/perl 

 

#insert the source IP according to the traces that you are going 

to analyze 

$ip_rif = '147.83.130.144 ';   #Spain 

#$ip_rif = '192.168.1.101';    #Romania 

 

my $header=34; 

my %ip; #tiene traccia di tutti gli ip 

 

#*************************** TCP  ************************* 

#TCP hashes definition 

my %down_d_ip; #it keeps all IP source address in download 

 

open(IN, "< C:/Program Files/Perl Express/Input/TCP_only.txt") || 

die "It’s impossible to open the file\n\n"; 

while(<IN>) { 

chomp; 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

#hash loading 

if(!($s_ip eq $ip_rif)) 

 {  #download 

$down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 



 
 

Appendix A                                                                        Implemented Perl scripts 

162 
 

      push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $byte; 

 $ip{$s_ip}=1; 

 } 

} 

close(IN); 

 

#******************* PRINTING OF ALL IP ADDRESSES *************** 

my $TCP_cont_media=0; 

my $TCP_sum_media=0; 

#cicle on IP address  ---> TCP download traffic 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

         my $somma=0; 

                 my $i=0; 

                 for ($i=0; $i<= $#{$down_d_ip{$a}{$b}{$c}}; $i++) 

                        { 

                        if  (${$down_d_ip{$a}{$b}{$c}}[$i]>1000) 

{$count++;} 

                        $somma +=$down_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) { 

                        $TCP_sum_media+=$somma; 

                        $TCP_cont_media+=$i; 

}}}} 

 

#*************************** UDP  ************************* 

#UDP hashes definition 

my %down_d_ip; #it keeps all IP source address in download 

open(IN, "< C:/Program Files/Perl Express/Input/UDP_only.txt") || 

die "It’s impossible to open the file\n\n"; 

while(<IN>) { 

chomp; 



 
 

Appendix A                                                                        Implemented Perl scripts 

163 
 

(my $s_ip, my $d_ip, my $s_port, my $d_port, my $byte) = split; 

if(  (!($s_ip)) || (!($d_ip)) || (!($s_port)) || (!($d_port)) || 

(!($byte)) || ( ($s_ip) eq '0.0.0.0') || ( ($d_ip) eq '0.0.0.0') 

|| ( ($s_ip) eq 'NA') || ( ($d_ip) eq 'NA') ) { next;} 

#hash loading 

if(!($s_ip eq $ip_rif)) 

 {  #download 

$down_d_ip{$s_ip}{$s_port}{$d_port}=[]unless exists 

$down_d_ip{$s_ip}{$s_port}{$d_port}; 

      push @{$down_d_ip{$s_ip}{$s_port}{$d_port}}, $byte; 

 $ip{$s_ip}=1; 

 } 

} 

close(IN); 

 

#******************* PRINTING OF ALL IP ADDRESSES *************** 

my $UDP_cont_media=0; 

my $UDP_sum_media=0; 

#cicle on IP address  ---> UDP download traffic 

foreach my $a( keys %down_d_ip) 

{       #cicle on source ports 

 foreach my $b( keys %{$down_d_ip{$a} } ) 

        {       #cicle on destination ports 

         foreach my $c( keys %{$down_d_ip{$a}{$b}  } ) 

                { 

                 my $count=0; 

         my $somma=0; 

                 my $i=0; 

                 for ($i=0; $i<= $#{$down_d_ip{$a}{$b}{$c}}; $i++) 

                        { 

                        if  (${$down_d_ip{$a}{$b}{$c}}[$i]>1000) 

{$count++;} 

                        $somma +=$down_d_ip{$a}{$b}{$c}[$i]; 

                        } 

                  if ($count>10) { 

                        $UDP_sum_media+=$somma; 

                        $UDP_cont_media+=$i; 
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}}}} 

 
 

#************************* PRINTING **************************** 

open(IN, "> C:/Program Files/Perl Express/Input/spain_media.txt") 

|| die "It’s impossible to open the file\n\n"; 

 

my $TCP_average; 

if ($TCP_cont_media==0){$TCP_average=0;} 

else {$TCP_average= ($TCP_sum_media/$TCP_cont_media)-$header;} 

my $UDP_average; 

if ($UDP_cont_media==0) {$UDP_average=0;} 

else {$UDP_average= ($UDP_sum_media/$UDP_cont_media)-$header;} 

my $total_sum= $UDP_sum_media+$TCP_sum_media; 

my $total_count= $TCP_cont_media+$UDP_cont_media; 

my $total_average; 

if ($total_count==0) {$total_average=0;} 

else {$total_average= ($total_sum/$total_count)-$header;} 

 

print IN "SPAIN: Calculus about video download traffic\n\n"; 

print IN "TCP\n sum = $TCP_sum_media\n num_packet = 

$TCP_cont_media\n average = $TCP_average\n\n"; 

print IN "UDP\n sum = $UDP_sum_media\n num_packet = 

$UDP_cont_media\n average = $UDP_average\n\n"; 

print IN "TOTAL\n sum = $total_sum\n num_packet = $total_count\n 

average = $total_average"; 

close(IN); 

 

open(IN, "> C:/Program Files/Perl 

Express/Input/romania_media.txt") || die "It’s impossible to open 

the file\n\n"; 

 

my $TCP_average; 

if ($TCP_cont_media==0){$TCP_average=0;} 

else {$TCP_average= ($TCP_sum_media/$TCP_cont_media)-$header;} 

my $UDP_average; 

if ($UDP_cont_media==0) {$UDP_average=0;} 
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else {$UDP_average= ($UDP_sum_media/$UDP_cont_media)-$header;} 

my $total_sum= $UDP_sum_media+$TCP_sum_media; 

my $total_count= $TCP_cont_media+$UDP_cont_media; 

my $total_average; 

if ($total_count==0) {$total_average=0;} 

else {$total_average= ($total_sum/$total_count)-$header;} 

 

print IN "ROMANIA: Calculus about video download traffic\n\n"; 

print IN "TCP\n sum = $TCP_sum_media\n num_packet = 

$TCP_cont_media\n average = $TCP_average\n\n"; 

print IN "UDP\n sum = $UDP_sum_media\n num_packet = 

$UDP_cont_media\n average = $UDP_average\n\n"; 

print IN "TOTAL\n sum = $total_sum\n num_packet = $total_count\n 

average = $total_average"; 

close(IN); 
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APPENDIX B 

Implemented M-files 
 

 

 In this second appendix all M-files produced during this work are reported 

according to the order of their using in the sixth chapter. Some comments are 

writing in order to help the comprehension. 

 

 

1. UDP-TCP, Upload-Download, Control-Data 

traffic division 
  
%loading of TCP text files 
%Romania 
load video_download_TCP.txt; 
load video_upload_TCP.txt; 
load control_download_TCP.txt; 
load control_upload_TCP.txt; 
load total_download_TCP.txt; 
load total_upload_TCP.txt; 
%Spain 
load TCP_down_video.txt; 
load TCP_up_video.txt; 
load TCP_down_control.txt; 
load TCP_up_control.txt; 
load total_down_TCP.txt; 
load total_up_TCP.txt; 
  
figure(1); 
p=cdfplot(video_download_TCP); 
%a 5% of the range is added on y-axis in order to obtain a better 
visualization, so it is written 1.00075 
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axis([10000 100000000 0.94 1.00075]); 
grid off; %it takes off the grid  
set(gca,'XScale','log'); %it sets a logarithmic scale on x-axis 
set(p,'Color','Blue'); %line colour 
hold on; 
p=cdfplot(TCP_down_video); 
set(p,'Color','Red'); 
grid off; 
legend('Romania','Spain','Location','NorthWest'); 
title('TCP video download'); 
xlabel('Traffic [bytes]'); %it sets a label on x-axis 
ylabel('CDF'); %it sets a label on y-axis 
  
saveas(gcf,'t-video_download_TCP.pdf'); %save as pdf 
saveas(gcf,'t-video_download_TCP.png'); %save as png 
saveas(gcf,'t-video_download_TCP.fig'); %save as fig 
saveas(gcf,'t-video_download_TCP.eps'); %save as eps 
saveas(gcf,'t-video_download_TCP.jpg'); %save as jpg 
  
figure(2); 
p=cdfplot(video_upload_TCP); 
axis([10000 100000000 0.94 1.00075]); 
grid off;  
set(gca,'XScale','log'); 
set(p,'Color','Blue');  
hold on; 
p=cdfplot(TCP_up_video); 
set(p,'Color','Red');  
grid off;   
legend('Romania','Spain','Location','NorthWest'); 
title('TCP video upload'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF'); 
saveas(gcf,'t-video_upload_TCP.pdf'); 
saveas(gcf,'t-video_upload_TCP.png'); 
saveas(gcf,'t-video_upload_TCP.fig'); 
saveas(gcf,'t-video_upload_TCP.eps'); 
saveas(gcf,'t-video_upload_TCP.jpg'); 
  
figure(3); 
p=cdfplot(control_download_TCP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue'); 
grid off; 
set(gca,'XScale','log'); 
hold on; 
p=cdfplot(TCP_down_control); 
set(p,'Color','Red');  
grid off;  
legend('Romania','Spain','Location','NorthWest'); 
title('TCP control download'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF');  
saveas(gcf,'t-control_download_TCP.pdf'); 
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saveas(gcf,'t-control_download_TCP.png'); 
saveas(gcf,'t-control_download_TCP.fig'); 
saveas(gcf,'t-control_download_TCP.eps'); 
saveas(gcf,'t-control_download_TCP.jpg'); 
  
figure(4); 
p=cdfplot(control_upload_TCP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue');  
grid off;   
set(gca,'XScale','log');  
hold on; 
p=cdfplot(TCP_up_control); 
set(p,'Color','Red');  
grid off;   
legend('Romania','Spain','Location','NorthWest'); 
title('TCP control upload'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF'); 
saveas(gcf,'t-control_upload_TCP.pdf'); 
saveas(gcf,'t-control_upload_TCP.png'); 
saveas(gcf,'t-control_upload_TCP.fig'); 
saveas(gcf,'t-control_upload_TCP.eps'); 
saveas(gcf,'t-control_upload_TCP.jpg'); 
  
figure(5); 
p=cdfplot(total_download_TCP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue'); 
grid off;  
set(gca,'XScale','log'); 
hold on; 
p=cdfplot(total_down_TCP); 
set(p,'Color','Red'); 
grid off; 
legend('Romania','Spain','Location','NorthWest'); 
title('TCP total download'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF');  
saveas(gcf,'t-total_download_TCP.pdf'); 
saveas(gcf,'t-total_download_TCP.png'); 
saveas(gcf,'t-total_download_TCP.fig'); 
saveas(gcf,'t-total_download_TCP.eps'); 
saveas(gcf,'t-total_download_TCP.jpg'); 
  
figure(6); 
p=cdfplot(total_upload_TCP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue'); 
grid off;  
set(gca,'XScale','log'); 
hold on; 
p=cdfplot(total_up_TCP); 
set(p,'Color','Red'); 
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grid off;  
legend('Romania','Spain','Location','NorthWest'); 
title('TCP total upload'); 
xlabel('Traffic [bytes]');  
ylabel('CDF'); 
saveas(gcf,'t-total_upload_TCP.pdf'); 
saveas(gcf,'t-total_upload_TCP.png'); 
saveas(gcf,'t-total_upload_TCP.fig'); 
saveas(gcf,'t-total_upload_TCP.eps'); 
saveas(gcf,'t-total_upload_TCP.jpg'); 
  
  
%loading of UDP text files 
%Romania 
load video_download_UDP.txt; 
load video_upload_UDP.txt; 
load control_download_UDP.txt; 
load control_upload_UDP.txt; 
load total_download_UDP.txt; 
load total_upload_UDP.txt; 
%Spain 
load UDP_down_video.txt; 
load UDP_up_video.txt; 
load UDP_down_control.txt; 
load UDP_up_control.txt; 
load total_down_UDP.txt; 
load total_up_UDP.txt; 
  
figure(7); 
p=cdfplot(video_download_UDP); 
%a 5% of the range is added on y-axis in order to obtain a better 
visualization, so it is written 1.00075 
axis([10000 100000000 0.94 1.00075]); 
grid off; %it takes off the grid  
set(gca,'XScale','log'); %it sets a logarithmic scale on x-axis 
set(p,'Color','Blue'); %line colour 
hold on; 
p=cdfplot(UDP_down_video); 
set(p,'Color','Red'); 
grid off; 
legend('Romania','Spain','Location','NorthWest'); 
title('UDP video download'); 
xlabel('Traffic [bytes]'); %it sets a label on x-axis 
ylabel('CDF'); %it sets a label on y-axis 
  
saveas(gcf,'t-video_download_UDP.pdf'); %save as pdf 
saveas(gcf,'t-video_download_UDP.png'); %save as png 
saveas(gcf,'t-video_download_UDP.fig'); %save as fig 
saveas(gcf,'t-video_download_UDP.eps'); %save as eps 
saveas(gcf,'t-video_download_UDP.jpg'); %save as jpg 
  
 
figure(8); 
p=cdfplot(video_upload_UDP); 
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axis([10000 100000000 0.94 1.00075]); 
grid off;  
set(gca,'XScale','log'); 
set(p,'Color','Blue');  
hold on; 
p=cdfplot(UDP_up_video); 
set(p,'Color','Red');  
grid off;   
legend('Romania','Spain','Location','NorthWest'); 
title('UDP video upload'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF'); 
saveas(gcf,'t-video_upload_UDP.pdf'); 
saveas(gcf,'t-video_upload_UDP.png'); 
saveas(gcf,'t-video_upload_UDP.fig'); 
saveas(gcf,'t-video_upload_UDP.eps'); 
saveas(gcf,'t-video_upload_UDP.jpg'); 
  
figure(9); 
p=cdfplot(control_download_UDP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue'); 
grid off; 
set(gca,'XScale','log'); 
hold on; 
p=cdfplot(UDP_down_control); 
set(p,'Color','Red');  
grid off;  
legend('Romania','Spain','Location','NorthWest'); 
title('UDP control download'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF');  
saveas(gcf,'t-control_download_UDP.pdf'); 
saveas(gcf,'t-control_download_UDP.png'); 
saveas(gcf,'t-control_download_UDP.fig'); 
saveas(gcf,'t-control_download_UDP.eps'); 
saveas(gcf,'t-control_download_UDP.jpg'); 
  
figure(10); 
p=cdfplot(control_upload_UDP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue');  
grid off;   
set(gca,'XScale','log');  
hold on; 
p=cdfplot(UDP_up_control); 
set(p,'Color','Red');  
grid off;   
legend('Romania','Spain','Location','NorthWest'); 
title('UDP control upload'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF'); 
saveas(gcf,'t-control_upload_UDP.pdf'); 
saveas(gcf,'t-control_upload_UDP.png'); 
saveas(gcf,'t-control_upload_UDP.fig'); 
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saveas(gcf,'t-control_upload_UDP.eps'); 
saveas(gcf,'t-control_upload_UDP.jpg'); 
 
figure(11); 
p=cdfplot(total_download_UDP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue'); 
grid off;  
set(gca,'XScale','log'); 
hold on; 
p=cdfplot(total_down_UDP); 
set(p,'Color','Red'); 
grid off; 
legend('Romania','Spain','Location','NorthWest'); 
title('UDP total download'); 
xlabel('Traffic [bytes]'); 
ylabel('CDF');  
saveas(gcf,'t-total_download_UDP.pdf'); 
saveas(gcf,'t-total_download_UDP.png'); 
saveas(gcf,'t-total_download_UDP.fig'); 
saveas(gcf,'t-total_download_UDP.eps'); 
saveas(gcf,'t-total_download_UDP.jpg'); 
  
figure(12); 
p=cdfplot(total_upload_UDP); 
axis([1 100000000 0.94 1.00075]); 
set(p,'Color','Blue'); 
grid off;  
set(gca,'XScale','log'); 
hold on; 
p=cdfplot(total_up_UDP); 
set(p,'Color','Red'); 
grid off;  
legend('Romania','Spain','Location','NorthWest'); 
title('UDP total upload'); 
xlabel('Traffic [bytes]');  
ylabel('CDF'); 
saveas(gcf,'t-total_upload_UDP.pdf'); 
saveas(gcf,'t-total_upload_UDP.png'); 
saveas(gcf,'t-total_upload_UDP.fig'); 
saveas(gcf,'t-total_upload_UDP.eps'); 
saveas(gcf,'t-total_upload_UDP.jpg'); 
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2. Download/upload balance 
 
%Spain 
load TCP_down_control.txt; 
load TCP_up_control.txt; 
load TCP_down_video.txt; 
load TCP_up_video.txt; 
load UDP_down_control.txt; 
load UDP_up_control.txt; 
load UDP_down_video.txt; 
load UDP_up_video.txt; 
load total_down_TCP.txt; 
load total_up_TCP.txt; 
load total_down_UDP.txt; 
load total_up_UDP.txt; 
  
figure(1); 
x =(TCP_up_video); 
y = (TCP_down_video); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
axis([10000 100000000 10000 100000000]); 
title('Spain - TCP video: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Spain-TCP_video.pdf'); 
saveas(gcf,'Spain-TCP_video.png'); 
saveas(gcf,'Spain-TCP_video.fig'); 
saveas(gcf,'Spain-TCP_video.eps'); 
saveas(gcf,'Spain-TCP_video.jpg'); 
  
figure(2); 
x =(TCP_up_control); 
y = (TCP_down_control); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log');  
title('Spain - TCP control: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
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j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off;  
saveas(gcf,'Spain-TCP_control.pdf'); 
saveas(gcf,'Spain-TCP_control.png'); 
saveas(gcf,'Spain-TCP_control.fig'); 
saveas(gcf,'Spain-TCP_control.eps'); 
saveas(gcf,'Spain-TCP_control.jpg'); 
  
figure(3); 
x =(total_up_TCP); 
y = (total_down_TCP); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
title('Spain - TCP total: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Spain-TCP_total.pdf'); 
saveas(gcf,'Spain-TCP_total.png'); 
saveas(gcf,'Spain-TCP_total.fig'); 
saveas(gcf,'Spain-TCP_total.eps'); 
saveas(gcf,'Spain-TCP_total.jpg'); 
  
figure(4); 
x =(UDP_up_video); 
y = (UDP_down_video); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
axis([10000 100000000 10000 100000000]); 
title('Spain - UDP video: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
axis([0 50000000 0 50000000]); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Spain-UDP_video.pdf'); 
saveas(gcf,'Spain-UDP_video.png'); 
saveas(gcf,'Spain-UDP_video.fig'); 
saveas(gcf,'Spain-UDP_video.eps'); 
saveas(gcf,'Spain-UDP_video.jpg'); 
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figure(5); 
x =(UDP_up_control); 
y = (UDP_down_control); 
p= plot(x,y,'.'); 
axis([0 50000000 0 50000000]); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
title('Spain - UDP control: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
axis([0 50000000 0 50000000]); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Spain-UDP_control.pdf'); 
saveas(gcf,'Spain-UDP_control.png'); 
saveas(gcf,'Spain-UDP_control.fig'); 
saveas(gcf,'Spain-UDP_control.eps'); 
saveas(gcf,'Spain-UDP_control.jpg'); 
  
figure(6); 
x =(total_up_UDP); 
y = (total_down_UDP); 
p= plot(x,y,'.'); 
axis([0 50000000 0 50000000]); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
title('Spain - UDP total: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Spain-UDP_total.pdf'); 
saveas(gcf,'Spain-UDP_total.png'); 
saveas(gcf,'Spain-UDP_total.fig'); 
saveas(gcf,'Spain-UDP_total.eps'); 
saveas(gcf,'Spain-UDP_total.jpg'); 
 
 
%Romania 
load TCP_down_control.txt; 
load TCP_up_control.txt; 
load TCP_down_video.txt; 
load TCP_up_video.txt; 
load UDP_down_control.txt; 
load UDP_up_control.txt; 
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load UDP_down_video.txt; 
load UDP_up_video.txt; 
load total_down_TCP.txt; 
load total_up_TCP.txt; 
load total_down_UDP.txt; 
load total_up_UDP.txt; 
  
figure(1); 
x =(TCP_up_video); 
y = (TCP_down_video); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
axis([10000 100000000 10000 100000000]); 
title('Romania - TCP video: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Romania-TCP_video.pdf'); 
saveas(gcf,'Romania-TCP_video.png'); 
saveas(gcf,'Romania-TCP_video.fig'); 
saveas(gcf,'Romania-TCP_video.eps'); 
saveas(gcf,'Romania-TCP_video.jpg'); 
  
figure(2); 
x =(TCP_up_control); 
y = (TCP_down_control); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
title('Romania - TCP control: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off;  
saveas(gcf,'Romania-TCP_control.pdf'); 
saveas(gcf,'Romania-TCP_control.png'); 
saveas(gcf,'Romania-TCP_control.fig'); 
saveas(gcf,'Romania-TCP_control.eps'); 
saveas(gcf,'Romania-TCP_control.jpg'); 
  
figure(3); 
x =(total_up_TCP); 
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y = (total_down_TCP); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
title('Romania - TCP total: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Romania-TCP_total.pdf'); 
saveas(gcf,'Romania-TCP_total.png'); 
saveas(gcf,'Romania-TCP_total.fig'); 
saveas(gcf,'Romania-TCP_total.eps'); 
saveas(gcf,'Romania-TCP_total.jpg'); 
  
figure(4); 
x =(UDP_up_video); 
y = (UDP_down_video); 
p= plot(x,y,'.'); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
axis([10000 100000000 10000 100000000]); 
title('Romania - UDP video: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Romania-UDP_video.pdf'); 
saveas(gcf,'Romania-UDP_video.png'); 
saveas(gcf,'Romania-UDP_video.fig'); 
saveas(gcf,'Romania-UDP_video.eps'); 
saveas(gcf,'Romania-UDP_video.jpg'); 
  
figure(5); 
x =(UDP_up_control); 
y = (UDP_down_control); 
p= plot(x,y,'.'); 
axis([0 50000000 0 50000000]); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
title('Romania - UDP control: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
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hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
axis([0 50000000 0 50000000]); 
set(p,'Color','Black'); 
grid off;  
saveas(gcf,'Romania-UDP_control.pdf'); 
saveas(gcf,'Romania-UDP_control.png'); 
saveas(gcf,'Romania-UDP_control.fig'); 
saveas(gcf,'Romania-UDP_control.eps'); 
saveas(gcf,'Romania-UDP_control.jpg'); 
  
figure(6); 
x =(total_up_UDP); 
y = (total_down_UDP); 
p= plot(x,y,'.'); 
axis([0 50000000 0 50000000]); 
grid off; 
set(gca,'XScale','log'); 
set(gca,'YScale','log'); 
title('Romania - UDP total: download/upload balance'); 
xlabel('sent bytes (upload)'); 
ylabel('received bytes (download)'); 
set(p,'Color','Blue'); 
hold on; 
j=1:1000:100000000; 
p= plot(j,j); 
set(p,'Color','Black'); 
grid off; 
saveas(gcf,'Romania-UDP_total.pdf'); 
saveas(gcf,'Romania-UDP_total.png'); 
saveas(gcf,'Romania-UDP_total.fig'); 
saveas(gcf,'Romania-UDP_total.eps'); 
saveas(gcf,'Romania-UDP_total.jpg'); 
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3. Intra-domain and inter-domain traffic division 
 

load SIeI_TCP_up_video.txt; 
load RIeI_TCP_up_video.txt; 
  
figure(1); 
p=cdfplot(SIeI_TCP_up_video(:,1)); 
axis([1 100000000 0 1.05]); 
grid off; 
  
set(gca,'XScale','log'); 
set(p,'Color','Blue'); 
hold on; 
p=cdfplot(SIeI_TCP_up_video(:,2)); 
set(p,'Color','Red'); 
grid off; 
hold on; 
p=cdfplot(RIeI_TCP_up_video(:,1)); 
set(p,'Color','Yellow'); 
grid off; 
hold on; 
p=cdfplot(RIeI_TCP_up_video(:,2)); 
set(p,'Color','Green'); 
grid off; 
  
xlabel('Traffic [bytes]'); 
ylabel('CDF');  
title('TCP video upload'); 
legend('Spain intra domain traffic CDF','Spain inter domain 
traffic CDF','Romania intra domain traffic CDF','Romania inter 
domain traffic CDF','Location','NorthWest'); 
saveas(gcf,'tot_IeI_TCP_up_video.pdf'); 
saveas(gcf,'tot_IeI_TCP_up_video.png'); 
saveas(gcf,'tot_IeI_TCP_up_video.fig'); 
saveas(gcf,'tot_IeI_TCP_up_video.eps'); 
saveas(gcf,'tot_IeI_TCP_up_video.jpg'); 
 

 

4. Ports’ utilization 
 
load romania_tcp_destport_count.txt; 
load romania_tcp_sourceport_count.txt; 
load spain_tcp_destport_count.txt; 
load spain_tcp_sourceport_count.txt; 



 
 

Appendix B                                                                              Implemented M-files 

179 
 

  
%TCP destination ports 
figure(1); 
x =(romania_tcp_destport_count(:,1)); 
y =(romania_tcp_destport_count(:,2)); 
p = plot(x,y,'.'); 
grid off; 
set(gca,'YScale','log');   
title('TCP destination ports utilization'); 
xlabel('port number'); 
ylabel('utilization [times]'); 
set(p,'Color','Blue'); 
hold on; %it allows the plotting of several lines on the same 
graph 
x =(spain_tcp_destport_count(:,1)); 
y =(spain_tcp_destport_count(:,2)); 
p = plot(x,y,'.'); 
set(p,'Color','Red'); 
grid off; 
  
legend('Romania','Spain','Location','NorthEast'); 
saveas(gcf,'TCP_dest_ports.pdf'); 
saveas(gcf,'TCP_dest_ports.png'); 
saveas(gcf,'TCP_dest_ports.fig'); 
saveas(gcf,'TCP_dest_ports.eps'); 
saveas(gcf,'TCP_dest_ports.jpg'); 
  
%TCP source ports 
figure(2); 
x =(romania_tcp_sourceport_count(:,1)); 
y =(romania_tcp_sourceport_count(:,2)); 
p = plot(x,y,'.'); 
grid off; 
set(gca,'YScale','log'); 
title('TCP source ports utilization'); 
xlabel('port number');  
ylabel('utilization [times]'); 
set(p,'Color','Blue'); 
hold on; 
x =(spain_tcp_sourceport_count(:,1)); 
y =(spain_tcp_sourceport_count(:,2)); 
p = plot(x,y,'.'); 
set(p,'Color','Red'); 
grid off; 
  
legend('Romania','Spain','Location','NorthEast'); 
saveas(gcf,'TCP_source_ports.pdf'); 
saveas(gcf,'TCP_source_ports.png'); 
saveas(gcf,'TCP_source_ports.fig'); 
saveas(gcf,'TCP_source_ports.eps'); 
saveas(gcf,'TCP_source_ports.jpg'); 
  
  
load romania_udp_destport_count.txt; 
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load romania_udp_sourceport_count.txt; 
load spain_udp_destport_count.txt; 
load spain_udp_sourceport_count.txt; 
  
%UDP destination port 
figure(3); 
x =(romania_udp_destport_count(:,1)); 
y =(romania_udp_destport_count(:,2)); 
p = plot(x,y,'.'); 
grid off;  
set(gca,'YScale','log'); 
title('UDP destination ports utilization'); 
xlabel('port number');  
ylabel('utilization [times]'); 
set(p,'Color','Blue');  
hold on; 
x =(spain_udp_destport_count(:,1)); 
y =(spain_udp_destport_count(:,2)); 
p = plot(x,y,'.'); 
set(p,'Color','Red'); 
grid off; 
  
legend('Romania','Spain','Location','NorthEast'); 
saveas(gcf,'UDP_dest_ports.pdf');  
saveas(gcf,'UDP_dest_ports.png'); 
saveas(gcf,'UDP_dest_ports.fig'); 
saveas(gcf,'UDP_dest_ports.eps'); 
saveas(gcf,'UDP_dest_ports.jpg'); 
  
%UDP source port 
figure(4); 
x =(romania_udp_sourceport_count(:,1)); 
y =(romania_udp_sourceport_count(:,2)); 
p = plot(x,y,'.'); 
grid off; 
set(gca,'YScale','log'); 
  
title('UDP source ports utilization'); 
xlabel('port number');  
ylabel('utilization [times]'); 
set(p,'Color','Blue'); 
hold on; 
x =(spain_udp_sourceport_count(:,1)); 
y =(spain_udp_sourceport_count(:,2)); 
p = plot(x,y,'.'); 
set(p,'Color','Red'); 
grid off; 
  
legend('Romania','Spain','Location','NorthEast'); 
saveas(gcf,'UDP_source_ports.pdf'); 
saveas(gcf,'UDP_source_ports.png'); 
saveas(gcf,'UDP_source_ports.fig'); 
saveas(gcf,'UDP_source_ports.eps'); 
saveas(gcf,'UDP_source_ports.jpg'); 
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5. Network population for every minute 
 

load romania_minutes.txt; 
load spain_minutes.txt; 
  
figure(1); 
x =(romania_minutes(:,1)); 
y = (romania_minutes(:,2)); 
p= plot(x,y); 
grid off; 
  
title('Network population per minute'); 
xlabel('Time [minutes]'); 
ylabel('Number of peers'); 
set(p,'Color','Blue'); 
hold on; 
x = (spain_minutes(:,1)); 
y = (spain_minutes(:,2)); 
p= plot(x,y); 
set(p,'Color','Red'); 
grid off; 
  
legend('Romania','Spain','Location','West'); 
saveas(gcf,'Minute.pdf'); 
saveas(gcf,'Minute.png'); 
saveas(gcf,'Minute.fig'); 
saveas(gcf,'Minute.eps'); 
saveas(gcf,'Minute.jpg'); 

 

 

6. T representation 
 

load interarrivo.txt; 
  
figure(1); 
p=cdfplot(Spain_interarrivo); 
set(gca,'XScale','log');  
grid off;  
set(p,'Color','Blue'); 
xlabel('interarrival time intervals'); 
ylabel('interarrival time CDF'); 
title('interarrival time trend'); 
saveas(gcf,'Spain_interarrivo.pdf'); 
saveas(gcf,'Spain_interarrivo.png'); 
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saveas(gcf,'Spain_interarrivo.fig'); 
saveas(gcf,'Spain_interarrivo.eps'); 
saveas(gcf,'Spain_interarrivo.jpg'); 
 



 
 

Bibliography 
 

183 
 

Bibliography 
 

 

[1] http://www.crunchbase.com/company/youtube 

 last consultation on February 23th 2010 

 

[2] Thomas Silverston, Olivier Fourmaux, Alessio Botta, Alberto Dainotti, 

Antonio Pescapé, Giorgio Ventre, Kavé Salamatian. 

 “Traffic analysis of peer-to-peer IPTV communities”. 

 2008 Elsevier B.V. 8 November 2008 

 

[3] Dave Kosiur. 

“IP Multicasting - The complete guide to interactive corporate networks”. 

Wiley Computer Publishing, John Wiley & Sons, Inc. 

New York, Chichester, Weinheim, Brisbane, Singapore, Toronto 1998 

 

[4] Pantaleo Mastrapasqua. 

 “Algoritmi di bilanciamento del carico per reti Peer-to-Peer”. 

 Politecnico di Bari, Bari, Italy. March 19, 2007. 

 

[5]  http://support.microsoft.com/kb/291786/en-us?fr=1 

 last consultation on January 16th 2010 

 

[6] Vaneet Aggarwal, Robert Calderbank, Vijay Gopalakrishnan, Rittwik 

Jana, K.K. Ramakrishnan, Fang Yu. 

“The Effectiveness of Intelligent Scheduling for Multicast”. 

MM'09, Beijing, China. October 19-24, 2009. 

Copyright 2009 ACM 978-1-60558-608-3/09/10 



 
 

Bibliography 
 

184 
 

[7] http://www.eventhelix.com/realtimemantra/networking/ip_routing.htm 

 last consultation on January 21th 2010 

 

[8] Dan Komosny, Vit Novotny, Miroslav Balik. 

 “Bandwidth Redistribution Algorithm for Single Source Multicast”. 

Department of Telecommunications, Brno University of Technology, 

Brno, Czech Republic. 

Proceedings of the International Conference on Networking, International 

Conference on Systems and International Conference on Mobile. 

Communications and Learning Technologies (ICNICONSMCL’06).  

 © 2006 IEEE 

 

[9] Cisco Systems.  

“Rendezvous Point Engineering”. 

 Cisco Public Information. 2009. 

 

[10] Loránd Jakab, Albert Cabellos-Aparicio, Thomas Silverston, Jordi 

Domingo-Pascual. 

“CoreCast: Efficient Inter-Domain Live Streaming in the Core/Edge 

Separated Internet”. 

Under submission 

 

[11] Markus Oliver Junginger, Yugyung Lee. 

“A Self-Organizing Publish/Subscribe Middleware for Dynamic Peer-to-

Peer Networks”. 

IEEE Network, pp 38 – 43. January/February 2004 

 

[12] https://jxta.dev.java.net/ 

 last consultation on February 9th 2010 

 

 



 
 

Bibliography 
 

185 
 

[13] Hary Om. 

 “Enhanced Unified Architecture for Video-on-demand Services”. 

 1-4244-0216-6/06/$20.00 ©2006 IEEE 

 

[14] Tongqing Qiu, Zihui Ge, Seungjoon Lee, Jia Wang, Jun (Jim) Xu, Qi 

Zhao. 

 “Modeling User Activities in a Large IPTV System”. 

IMC’09, Chicago, Illinois, USA. Copyright 2009 ACM 978-1-60558-770-

7/09/11. November 4–6, 2009. 

 

[15] Hao Yin, Xuening Liu, Feng Qiu, Ning Xia, Chuang Lin, Hui Zhang, Vyas 

Sekar, Geyong Min. 

“Inside the Bird’s Nest: Measurements of Large-Scale Live VoD from the 

2008 Olympics”. 

 IMC’09, Chicago, Illinois, USA. November 4–6, 2009. 

Copyright 2009 ACM 978-1-60558-770-7/09/11 

 

[16] Cisco Systems. 

 “Resource Reservation Protocol” 

 Internetworking Technology Overview, chapter 43. 2000  

 

[17] Luigi Alfredo Grieco. 

 “MPEG-4”. 

 DEE- Telematics Labs, Politecnico di Bari, Bari, Italy. October 2007. 

 

[18] Hyunseok Chang, Sugih Jamin, Wenjie Wang. 

 “Live Streaming Performance of the Zattoo Network”. 

IMC’09, Chicago, Illinois, USA. Copyright 2009 ACM 978-1-60558-770-

7/09/11. November 4–6, 2009. 

 

 



 
 

Bibliography 
 

186 
 

[19] Xiaojun Heiy, Chao Liangz, Jian Liangy, Yong Liuz, Keith W. Rossy. 

 “A Measurement Study of a Large-Scale P2P IPTV System”. 

 Polytechnic University, Brooklyn, NY, USA 11201 

 

[20] Chuan Wu, Baochun Li, Shuqiao Zhao. 

 “Diagnosing Network-wide P2P Live Streaming Inefficiencies”. 

 ECE, University of Toronto, Tech. Rep.. January 2009. 

 

[21] Olivier Bonaventure. 

 “Scaling the Internet with LISP”. 

Department of Computing Science and Engineering Université catholique 

de Louvain (UCL), Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve - 

Belgium. 2009 

 

[22] David Meyer. 

 “The Locator Identifier Separation Protocol (LISP)”. 

 The Internet Protocol Journal, vol. 11, no. 1,  pp. 23-36. March 2008. 

 

[23] http://www.wireshark.org/ 

 last consultation on February 18th 2010 

 

[24] Ulf Lamping. 

 “Wireshark Developer's Guide 30065 for Wireshark 1.2.0”. 

 Copyright © 2004-2008 Ulf Lamping. 

 

[25] http://perldoc.perl.org/ 

 last consultation on December 3rd 2009 

 

[26] http://www.mathworks.com/products/matlab/ 

 last consultation on December 19th 2009 


	1_frontespizio doble
	2_Table of contents
	3_Introduction
	4_Chapter 1
	5_Chapter 2
	6_Chapter 3
	7_Chapter 4
	8_Chapter 5
	9_Chapter_6
	10_Conclusions
	11_Used acronyms' list
	12_Appendix A
	13_Appendix B
	14_Bibliography

